Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurol ; 328: 113248, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32084452

RESUMO

As components of the Mediterranean diet (MedDiet) olive polyphenols may play a crucial role for the prevention of Alzheimer's disease (AD). Since mitochondrial dysfunction is involved in both, brain ageing and early AD, effects of 10 different purified phenolic secoiridoids (hydroxytyrosol, tyrosol, oleacein, oleuroside, oleuroside aglycon, oleuropein, oleocanthal, ligstroside, ligstroside aglycone and ligustaloside B) and two metabolites (the plant metabolite elenolic acid and the mammalian metabolite homovanillic acid) were tested in very low doses on mitochondrial function in SH-SY5Y-APP695 cells - a cellular model of early AD. All tested secoiridoids significantly increased basal adenosine triphosphate (ATP) levels in SY5Y-APP695 cells. Oleacein, oleuroside, oleocanthal and ligstroside showed the highest effect on ATP levels and were additionally tested on mitochondrial respiration. Only oleocanthal and ligstroside were able to enhance the capacity of respiratory chain complexes. To investigate their underlying molecular mechanisms, the expression of genes associated with mitochondrial biogenesis, respiration and antioxidative capacity (PGC-1α, SIRT1, CREB1, NRF1, TFAM, complex I, IV and V, GPx1, SOD2, CAT) were determined using qRT-PCR. Exclusively ligstroside increased mRNA expression of SIRT1, CREB1, complex I, and GPx1. Furthermore, oleocanthal but not ligstroside decreased Aß 1-40 levels in SH-SY5Y-APP695 cells. To investigate the in vivo effects of purified secoiridoids, the two most promising compounds (oleocanthal and ligstroside) were tested in a mouse model of ageing. Female NMRI mice, aged 12 months, received a diet supplemented with 50 mg/kg oleocanthal or ligstroside for 6 months (equivalent to 6.25 mg/kg b.w.). Young (3 months) and aged (18 months) mice served as controls. Ligstroside fed mice showed improved spatial working memory. Furthermore, ligstroside restored brain ATP levels in aged mice and led to a significant life extension compared to aged control animals. Our findings indicate that purified ligstroside has outstanding performance on mitochondrial bioenergetics in models of early AD and brain ageing by mechanisms that may not interfere with Aß production. Additionally, ligstroside expanded the lifespan in aged mice and enhanced cognitive function.


Assuntos
Envelhecimento/efeitos dos fármacos , Aldeídos/farmacologia , Doença de Alzheimer/patologia , Encéfalo/efeitos dos fármacos , Monoterpenos Ciclopentânicos/farmacologia , Glucosídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Fenóis/farmacologia , Piranos/farmacologia , Animais , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
2.
Planta ; 250(6): 2099, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31676936

RESUMO

Page 5, paragraph 3, line 14, GenBank Accession Number which should read MK234850 instead of MK23485.

3.
Planta ; 250(6): 2083-2097, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31578603

RESUMO

MAIN CONCLUSION: Two newly identified phytohormone cleaving esterases from Olea europaea are responsible for the glucosidase-initiated activation of the specialized metabolites ligstroside and oleuropein. Biosynthetic routes leading to the formation of plant natural products are tightly orchestrated enzymatic sequences usually involving numerous specialized catalysts. After their accumulation in plant cells and tissues, otherwise non-reactive compounds can be enzymatically activated, e.g., in response to environmental threats, like pathogen attack. In olive (Olea europaea), secoiridoid-derived phenolics, such as oleuropein or ligstroside, can be converted by glucosidases and as yet unidentified esterases to oleoside aldehydes. These are not only involved in pathogen defense, but also bear considerable promise as pharmaceuticals or neutraceuticals. Making use of the available olive genomic data, we have identified four novel methylesterases that showed significant homology to the polyneuridine aldehyde esterase (PNAE) from Rauvolfia serpentina, an enzyme acting on a distantly related metabolite group (monoterpenoid indole alkaloids, MIAs) also featuring a secoiridoid structural component. The four olive enzymes belong to the α/ß-hydrolase fold family and showed variable in vitro activity against methyl esters of selected plant hormones, namely jasmonic acid (MeJA), indole acetic acid (MeIAA), as well as salicylic acid (MeSA). None of the identified catalysts were directly active against the olive metabolites oleuropein, ligstroside, or oleoside 11-methyl ester. When employed in a sequential reaction with an appropriate glucosidase, however, two were capable of hydrolyzing these specialized compounds yielding reactive dialdehydes. This suggests that the esterases play a pivotal role in the activation of the olive secoiridoid polyphenols. Finally, we show that several of the investigated methylesterases exhibit a concomitant in vitro transesterification capacity-a novel feature, yielding ethyl esters of jasmonic acid (JA) or indole-3-acetic acid (IAA).


Assuntos
Ésteres/metabolismo , Glucosídeos/metabolismo , Glucosídeos Iridoides/metabolismo , Iridoides/metabolismo , Olea/enzimologia , Proteínas de Plantas/metabolismo , Piranos/metabolismo
4.
J Microbiol Biotechnol ; 21(6): 617-26, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21715969

RESUMO

Transglutaminase from Streptomyces mobaraensis is an enzyme of unknown function that cross-links proteins to high molecular weight aggregates. Previously, we characterized two intrinsic transglutaminase substrates with inactivating activities against subtilisin and dispase. This report now describes a novel substrate that inhibits papain, bromelain, and trypsin. Papain was the most sensitive protease; thus, the protein was designated Streptomyces papain inhibitor (SPI). To avoid transglutaminase-mediated glutamine deamidation during culture, SPI was produced by Streptomyces mobaraensis at various growth temperatures. The best results were achieved by culturing for 30-50 h at 42 degrees C, which yielded high SPI concentrations and negligibly small amounts of mature transglutaminase. Transglutaminasespecific biotinylation displayed largely unmodified glutamine and lysine residues. In contrast, purified SPI from the 28 degrees C culture lost the potential to be cross-linked, but exhibited higher inhibitory activity as indicated by a significantly lower Ki (60 nM vs. 140 nM). Despite similarities in molecular mass (12 kDa) and high thermostability, SPI exhibits clear differences in comparison with all members of the wellknown family of Streptomyces subtilisin inhibitors. The neutral protein (pI of 7.3) shares sequence homology with a putative protein from Streptomyces lavendulae, whose conformation is most likely stabilized by two disulfide bridges. However, cysteine residues are not localized in the typical regions of subtilisin inhibitors. SPI and the formerly characterized dispase-inactivating substrate are unique proteins of distinct Streptomycetes such as Streptomyces mobaraensis. Along with the subtilisin inhibitory protein, they could play a crucial role in the defense of vulnerable protein layers that are solidified by transglutaminase.


Assuntos
Cisteína Proteases/efeitos dos fármacos , Inibidores de Cisteína Proteinase/isolamento & purificação , Papaína/antagonistas & inibidores , Streptomyces/metabolismo , Transglutaminases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Dados de Sequência Molecular , Papaína/química , Papaína/isolamento & purificação , Papaína/metabolismo , Homologia de Sequência , Streptomyces/classificação , Streptomyces/enzimologia , Streptomyces/crescimento & desenvolvimento , Especificidade por Substrato
5.
Biosci Biotechnol Biochem ; 73(5): 993-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19420706

RESUMO

Transglutaminase (TGase) from Streptomyces mobaraensis is a Ca(2+) independent enzyme that cross-links proteins to high molecular weight aggregates. A dispase autolysis inducing protein (DAIP) was identified as an intrinsic TGase substrate exhibiting accessible glutamine and lysine residues. DAIP modification during culture by TGase resulted in deamidation of reactive glutamines, formation of glutamic/lysine residue pairs, and failure of cross-linking. The reactivity of modified DAIP can be restored to some extent by N-lauroylamido-3-N',N'-dimethylpropyl amine, thus exposing concertedly buried glutamines and lysines. The novel TGase substrate differs considerably from the well known Streptomyces subtilisin inhibitors in higher molecular mass (37 kDa), lower pI (7.1-7.2), moderate thermo-stability, and the mode of erasing dispase activity. Our experiments suggested that DAIP induces autolysis without removal of essential metals, such as Ca(2+) and Zn(2+). Among other endoproteases, only thermolysin was similarly affected, but at considerably higher DAIP concentrations, due to simultaneous degradation of DAIP.


Assuntos
Proteínas de Bactérias/metabolismo , Metaloproteases/metabolismo , Streptomyces/enzimologia , Transglutaminases/metabolismo , Animais , Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Bovinos , Endopeptidases/metabolismo , Glutamina/metabolismo , Lisina/metabolismo , Poliaminas/química , Poliaminas/farmacologia , Estabilidade Proteica , Coloração e Rotulagem , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA