Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 7(1): e06007, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33521363

RESUMO

Mancozeb (MZ) is a broad-spectrum fungicide used worldwide in several crops. Neurological disorders in humans and animals have been associated with exposure to this compound by mechanisms still not fully understood. Drosophila melanogaster represents a reliable model in toxicological studies, presenting genetic and biochemical similarities with mammals. In this study, D. melanogaster flies were exposed for 15 days to MZ through the food (5 and 10 mg/mL). After that period, the efficiency of mitochondrial respiration complexes and metabolic markers were analyzed and evaluated. Flies presented weight loss, lower glucose, trehalose, and glycogen levels, and augmented levels of triglycerides concerning control (non-treated group). Acetyl-CoA Synthetase (ACeCS-1) and Acyl-Coenzyme Synthetase (ACSL1) contents were unchanged by MZ treatment. Mitochondrial respiration of flies was targeted by MZ treatment, evidenced by a decrease in oxygen consumption and bioenergetics rate and inhibition in mitochondrial complexes I/II. These results suppose that an impairment in mitochondrial respiration jointly with reduced levels of energetic substrates might be a mechanism involved in MZ deleterious effects, possibly by the limitation of ATP's availability, necessary for essential cellular processes.

2.
Oxid Med Cell Longev ; 2018: 5456928, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116484

RESUMO

Mancozeb (MZ), a manganese- and zinc-containing ethylene-bis-dithiocarbamate, is a broad-spectrum fungicide. Harmful effects of this fungicide have been reported in nontarget organisms via a not fully understood mechanism. Drosophila melanogaster has provided remarkable contributions for toxicological studies. This work was aimed at evaluating the biochemical targets and implication of oxidative stress in MZ-mediated toxicity in drosophilas. Exposure of flies for fifteen days to MZ at 5 and 10 mg/mL through the diet impaired locomotor performance and induced fly mortality. In parallel, it caused lipid peroxidation and reactive oxygen species (ROS) formation and Mn overload. MZ inhibited superoxide dismutase and inducted catalase and glutathione S-transferase activities. Nitric oxide and reduced glutathione levels were significantly decreased by MZ. Heat shock proteins (HSP70 and HSP83) and Nrf2 mRNA levels were significantly augmented in MZ-exposed flies. Our study reinforced the use of Drosophila melanogaster as a reliable model for the study of biochemical targets of pesticides, and based on our data, MZ induced oxidative damage and Mn accumulation in a concentration-dependent manner. An adaptative cellular state was inducted by the lower concentration of pesticide, possibly contributing to the slighter damage observed.


Assuntos
Fungicidas Industriais/efeitos adversos , Proteínas de Choque Térmico HSP70/metabolismo , Maneb/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Zineb/efeitos adversos , Animais , Drosophila melanogaster , Ratos
3.
Antonie Van Leeuwenhoek ; 107(4): 921-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25601048

RESUMO

The microbiota and the functional genes actively involved in the process of breakdown and utilization of pollen grains in beebread and bee guts are not yet understood. The aim of this work was to assess the diversity and community structure of bacteria and archaea in Africanized honeybee guts and beebread as well as to predict the genes involved in the microbial bioprocessing of pollen using state of the art 'post-light' based sequencing technology. A total of 11 bacterial phyla were found within bee guts and 10 bacterial phyla were found within beebread. Although the phylum level comparison shows most phyla in common, a deeper phylogenetic analysis showed greater variation of taxonomic composition. The families Enterobacteriaceae, Ricketsiaceae, Spiroplasmataceae and Bacillaceae, were the main groups responsible for the specificity of the bee gut while the main families responsible for the specificity of the beebread were Neisseriaceae, Flavobacteriaceae, Acetobacteraceae and Lactobacillaceae. In terms of microbial community structure, the analysis showed that the communities from the two environments were quite different from each other with only 7 % of species-level taxa shared between bee gut and beebread. The results indicated the presence of a highly specialized and well-adapted microbiota within each bee gut and beebread. The beebread community included a greater relative abundance of genes related to amino acid, carbohydrate, and lipid metabolism, suggesting that pollen biodegradation predominantly occurs in the beebread. These results suggests a complex and important relationship between honeybee nutrition and their microbial communities.


Assuntos
Archaea/classificação , Bactérias/classificação , Abelhas/microbiologia , Abelhas/fisiologia , Microbiologia Ambiental , Microbioma Gastrointestinal , Pólen/metabolismo , Animais , Archaea/genética , Bactérias/genética , Biotransformação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA