Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 18(4): 363-370, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37027333

RESUMO

INTRODUCTION: Novel antibiotics are needed to keep antibiotic resistance at bay and to improve treatment of the many drug-susceptible infections for which current therapies achieve poor cure rates. While revolutionizing human therapeutics, the concept of targeted protein degradation (TPD) by bifunctional proteolysis targeting chimeras (PROTACs) has not yet been applied to the discovery of antibiotics. A major obstacle precluding successful translation of this strategy to antibiotic development is that bacteria lack the E3 ligase-proteasome system exploited by human PROTACs to facilitate target degradation. AREAS COVERED: The authors describe the serendipitous discovery of the first monofunctional target-degrading antibiotic pyrazinamide, supporting TPD as a viable and novel approach in antibiotic discovery. They then discuss the rational design, mechanism, and activity of the first bifunctional antibacterial target degrader BacPROTAC, enabling a generalizable approach to TPD in bacteria. EXPERT OPINION: BacPROTACs demonstrate that linking a target directly to a bacterial protease complex can promote target degradation. BacPROTACs successfully bypass the 'middleman' E3 ligase, providing an entry strategy for the generation of antibacterial PROTACs. We speculate that antibacterial PROTACs will not only expand the target space but may also improve treatment by allowing dosage reduction, stronger bactericidal activity and activity against drug-tolerant 'persisters.'


Assuntos
Antibacterianos , Ubiquitina-Proteína Ligases , Humanos , Antibacterianos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
2.
RSC Med Chem ; 13(12): 1605-1613, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36545436

RESUMO

Due to its central role in energy generation and bacterial viability, mycobacterial bioenergetics is an attractive therapeutic target for anti-tuberculosis drug discovery. Building upon our work on antimycobacterial dioxonaphthoimidazoliums that were activated by a proximal positive charge and generated reactive oxygen species upon reduction by Type II NADH dehydrogenase, we herein studied the effect of a distal positive charge on the antimycobacterial activity of naphthoquinoneimidazoles by incorporating a trialkylphosphonium cation. The potency-enhancing properties of the linker length were affirmed by structure-activity relationship studies. The most active compound against M. tb H37Rv displayed good selectivity index (SI = 34) and strong bactericidal activity in the low micromolar range, which occurred through rapid bacterial membrane depolarization that resulted in depletion of intracellular ATP. Through this work, we demonstrated a switch of the scaffold's mode-of-action via relocation of positive charge while retaining its excellent antibacterial activity and selectivity.

3.
Antimicrob Agents Chemother ; 66(12): e0123722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36350151

RESUMO

The antituberculosis candidate OPC-167832, an inhibitor of DprE1, was active against Mycobacterium abscessus. Resistance mapped to M. abscessus dprE1, suggesting target retention. OPC-167832 was bactericidal and did not antagonize activity of clinical anti-M. abscessus antibiotics. Due to its moderate potency compared to that against Mycobacterium tuberculosis, the compound lacked efficacy in a mouse model and is thus not a repurposing candidate. These results identify OPC-167832-DprE1 as a lead-target couple for a M. abscessus-specific optimization program.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Animais , Camundongos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
4.
Angew Chem Int Ed Engl ; 59(32): 13295-13304, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32337801

RESUMO

The F1 FO -ATP synthase is required for growth and viability of Mycobacterium tuberculosis and is a validated clinical target. A mycobacterium-specific loop of the enzyme's rotary γ subunit plays a role in the coupling of ATP synthesis within the enzyme complex. We report the discovery of a novel antimycobacterial, termed GaMF1, that targets this γ subunit loop. Biochemical and NMR studies show that GaMF1 inhibits ATP synthase activity by binding to the loop. GaMF1 is bactericidal and is active against multidrug- as well as bedaquiline-resistant strains. Chemistry efforts on the scaffold revealed a dynamic structure activity relationship and delivered analogues with nanomolar potencies. Combining GaMF1 with bedaquiline or novel diarylquinoline analogues showed potentiation without inducing genotoxicity or phenotypic changes in a human embryonic stem cell reporter assay. These results suggest that GaMF1 presents an attractive lead for the discovery of a novel class of anti-tuberculosis F-ATP synthase inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , ATPases Bacterianas Próton-Translocadoras/antagonistas & inibidores , Diarilquinolinas/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Benzamidas/química , Benzamidas/farmacologia , Benzamidas/toxicidade , Sinergismo Farmacológico , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Relação Estrutura-Atividade
5.
Nat Commun ; 11(1): 1661, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245967

RESUMO

Pyrazinamide is a sterilizing first-line tuberculosis drug. Genetic, metabolomic and biophysical analyses previously demonstrated that pyrazinoic acid, the bioactive form of the prodrug pyrazinamide (PZA), interrupts biosynthesis of coenzyme A in Mycobacterium tuberculosis by binding to aspartate decarboxylase PanD. While most drugs act by inhibiting protein function upon target binding, we find here that pyrazinoic acid is only a weak enzyme inhibitor. We show that binding of pyrazinoic acid to PanD triggers degradation of the protein by the caseinolytic protease ClpC1-ClpP. Thus, the old tuberculosis drug pyrazinamide exerts antibacterial activity by acting as a target degrader, a mechanism of action that has recently emerged as a successful strategy in drug discovery across disease indications. Our findings provide the basis for the rational discovery of next generation PZA.


Assuntos
Antituberculosos/farmacologia , Carboxiliases/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Pirazinamida/análogos & derivados , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Farmacorresistência Bacteriana/genética , Endopeptidase Clp/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
6.
ACS Infect Dis ; 6(4): 725-737, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32092260

RESUMO

The ability to respire and generate adenosine triphosphate (ATP) is essential for the physiology, persistence, and pathogenicity of Mycobacterium tuberculosis, which causes tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycobacteria. Docking studies were carried out to reveal potential binding and to understand the binding interactions with the target, cytochrome bcc. Whole-cell-based and in vitro assays demonstrated the potency of SCR0911 by inhibiting cell growth and ATP synthesis in both the fast- and slow-growing M. smegmatis and M. bovis bacillus Calmette-Guérin, respectively. The variety of biochemical assays and the use of a cytochrome bcc deficient mutant strain validated the cytochrome bcc oxidase as the direct target of the drug. The data demonstrate the broad-spectrum activity of SCR0911 and open the door for structure-activity relationship studies to improve the potency of new mycobacteria specific SCR0911 analogues.


Assuntos
Antimaláricos/farmacologia , Antituberculosos/farmacologia , Reposicionamento de Medicamentos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Simulação de Acoplamento Molecular
7.
Artigo em Inglês | MEDLINE | ID: mdl-31964791

RESUMO

Lung disease caused by Mycobacterium abscessus is very difficult to cure, and treatment failure rates are high. The antituberculosis drug bedaquiline (BDQ) is used as salvage therapy against this dreadful disease. However, BDQ is highly lipophilic, displays a long terminal half-life, and presents a cardiotoxicity liability associated with QT interval prolongation. Recent medicinal chemistry campaigns resulted in the discovery of 3,5-dialkoxypyridine analogues of BDQ which are less lipophilic, have higher clearance, and display lower cardiotoxic potential. TBAJ-876, a clinical development candidate of this series, shows attractive in vitro antitubercular activity and efficacy in a murine tuberculosis model. Here, we asked whether TBAJ-876 is active against M. abscessus TBAJ-876 displayed submicromolar in vitro activity against reference strains representing the three subspecies of M. abscessus and against a collection of clinical isolates. Drug-drug potency interaction studies with commonly used anti-M. abscessus antibiotics showed no antagonistic effects, suggesting that TBAJ-876 could be coadministered with currently used drugs. Efficacy studies, employing a mouse model of M. abscessus infection, demonstrated potent activity in vivo In summary, we demonstrate that TBAJ-876 shows attractive in vitro and in vivo activities against M. abscessus, similar to its BDQ parent. This suggests that next-generation BDQ, with improved tolerability and pharmacological profiles, may be useful for the treatment of M. abscessus lung disease in addition to the treatment of tuberculosis.


Assuntos
Antibacterianos/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos SCID , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/isolamento & purificação
8.
Artigo em Inglês | MEDLINE | ID: mdl-31712198

RESUMO

The diarylquinoline F1FO-ATP synthase inhibitor bedaquiline (BDQ) displays protonophore activity. Thus, uncoupling electron transport from ATP synthesis appears to be a second mechanism of action of this antimycobacterial drug. Here, we show that the new BDQ analogue TBAJ-876 did not retain the parental drug's protonophore activity. Comparative time-kill analyses revealed that both compounds exert the same bactericidal activity. These results suggest that the uncoupler activity is not required for the bactericidal activity of diarylquinolines.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Desacopladores/farmacologia , Trifosfato de Adenosina/biossíntese , Transporte de Elétrons/efeitos dos fármacos , Bicamadas Lipídicas , Testes de Sensibilidade Microbiana , Prótons
9.
Antibiotics (Basel) ; 8(4)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835707

RESUMO

Bedaquiline (BDQ) inhibits ATP generation in Mycobacterium tuberculosis by interfering with the F-ATP synthase activity. Two mechanisms of action of BDQ are broadly accepted. A direct mechanism involves BDQ binding to the enzyme's c-ring to block its rotation, thus inhibiting ATP synthesis in the enzyme's catalytic α3ß3-headpiece. An indirect mechanism involves BDQ uncoupling electron transport in the electron transport chain from ATP synthesis at the F-ATP synthase. In a recently uncovered second direct mechanism, BDQ binds to the enzyme's ε-subunit to disrupt its ability to link c-ring rotation to ATP synthesis at the α3ß3-headpiece. However, this mechanism is controversial as the drug's binding affinity for the isolated ε-subunit protein is moderate and spontaneous resistance mutants in the ε-subunit cannot be isolated. Recently, the new, structurally distinct BDQ analogue TBAJ-876 was utilized as a chemical probe to revisit BDQ's mechanisms of action. In this review, we first summarize discoveries on BDQ's mechanisms of action and then describe the new insights derived from the studies of TBAJ-876. The TBAJ-876 investigations confirm the c-ring as a target, while also supporting a functional role for targeting the ε-subunit. Surprisingly, the new findings suggest that the uncoupler mechanism does not play a key role in BDQ's anti-mycobacterial activity.

10.
Sci Rep ; 9(1): 16759, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727946

RESUMO

The dynamic interaction of the N- and C-terminal domains of mycobacterial F-ATP synthase subunit ε is proposed to contribute to efficient coupling of H+-translocation and ATP synthesis. Here, we investigate crosstalk between both subunit ε domains by introducing chromosomal atpC missense mutations in the C-terminal helix 2 of ε predicted to disrupt inter domain and subunit ε-α crosstalk and therefore coupling. The ε mutant εR105A,R111A,R113A,R115A (ε4A) showed decreased intracellular ATP, slower growth rates and lower molar growth yields on non-fermentable carbon sources. Cellular respiration and metabolism were all accelerated in the mutant strain indicative of dysregulated oxidative phosphorylation. The ε4A mutant exhibited an altered colony morphology and was hypersusceptible to cell wall-acting antimicrobials suggesting defective cell wall biosynthesis. In silico screening identified a novel mycobacterial F-ATP synthase inhibitor disrupting ε's coupling activity demonstrating the potential to advance this regulation as a new area for mycobacterial F-ATP synthase inhibitor development.


Assuntos
Trifosfato de Adenosina/metabolismo , Mutação , Mycobacterium/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular , Simulação por Computador , Metabolismo Energético , Modelos Moleculares , Mycobacterium/enzimologia , Mycobacterium/genética , Conformação Proteica , Estrutura Secundária de Proteína , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-31358589

RESUMO

The antituberculosis drug bedaquiline (BDQ) inhibits Mycobacterium tuberculosis F-ATP synthase by interfering with two subunits. Drug binding to the c subunit stalls the rotation of the c ring, while binding to the ε subunit blocks coupling of c ring rotation to ATP synthesis at the catalytic α3:ß3 headpiece. BDQ is used for the treatment of drug-resistant tuberculosis. However, the drug is highly lipophilic, displays a long terminal half-life, and has a cardiotoxicity liability by causing QT interval prolongation. Recent medicinal chemistry campaigns have resulted in the discovery of 3,5-dialkoxypyridine analogues of BDQ that are less lipophilic, have higher clearance, and display lower cardiotoxic potential. TBAJ-876, which is a new developmental compound of this series, shows attractive antitubercular activity and efficacy in a murine tuberculosis model. Here, we asked whether TBAJ-876 and selected analogues of the compound retain BDQ's mechanism of action. Biochemical assays showed that TBAJ-876 is a potent inhibitor of mycobacterial F-ATP synthase. Selection of spontaneous TBAJ-876-resistant mutants identified missense mutations at BDQ's binding site on the c subunit, suggesting that TBAJ-876 retains BDQ's targeting of the c ring. Susceptibility testing against a strain overexpressing the ε subunit and a strain harboring an engineered mutation in BDQ's ε subunit binding site suggest that TBAJ-876 retains BDQ's activity on the ε subunit. Nuclear magnetic resonance (NMR) titration studies confirmed that TBAJ-876 binds to the ε subunit at BDQ's binding site. We show that TBAJ-876 retains BDQ's antimycobacterial mode of action. The developmental compound inhibits the mycobacterial F-ATP synthase via a dual-subunit mechanism of interfering with the functions of both the enzyme's c and ε subunits.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA