Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
ACS Omega ; 9(10): 11255-11265, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496931

RESUMO

Methanol is a promising renewable fuel for achieving a better engine combustion efficiency and lower exhaust emissions. Under exhaust gas recirculation conditions, trace amounts of nitrogen oxides have been shown to participate in fuel oxidation and impact the ignition characteristics significantly. Despite numerous studies that analyzed the methanol/NOx interaction, no reliable skeletal kinetic mechanism is available for computational fluid dynamics (CFD) modeling. This work focuses on developing a skeletal CH3OH/NOx kinetic model consisting of 25 species and 55 irreversible and 27 reversible reactions, used for full-cycle engine combustion simulations. New experiments of methanol with the presence of 200 ppmv NO/NO2 were conducted in a rapid compression machine (RCM) at engine-relevant conditions (20-30 bar, 850-950 K). Experimental results indicate notable enhancement effects of the presence of NO/NO2 on methanol ignition under the conditions tested, which highlights the importance of including the CH3OH/NOx interactions in predicting combustion performance. The proposed skeletal mechanism was validated against the literature and new methanol and methanol/NOx experiments over a wide range of operating conditions. Furthermore, the skeletal mechanism was applied in three-dimensional (3D) CFD full-cycle simulations of spark-ignition (SI) and turbulent jet ignition (TJI) engine combustion using methanol. Simulation results demonstrate good agreement with experimental measurements of pressure traces and engine metrics, proving that the proposed skeletal mechanism is suitable and sufficient for CFD simulations.

2.
Commun Chem ; 6(1): 223, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845500

RESUMO

Polycyclic aromatic hydrocarbons are the main precursors to soot particles in combustion systems. A lack of direct experimental evidence has led to controversial theoretical explanations for the transition from gas-phase species to organic soot clusters. This work focuses on sampling infant soot particles from well-defined flames followed by analysis using state-of-the-art mass spectrometry. We found that PAH molecules present in soot particles are all stabilomers. Kinetic Monte Carlo simulations and thermodynamic stability calculations further identify the detected PAHs as peri-condensed and without aliphatic chains. Van der Waals forces can easily link PAHs of such size and shape to form PAH dimers and larger clusters under the specified flame conditions. Our results provide direct experimental evidence that soot inception is initiated by a physical process under typical flame conditions. This work improves our understanding of aerosol particulates, which has implications for their environmental and climate change impacts.

3.
iScience ; 26(8): 107389, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554439

RESUMO

Blue and green ammonia production have been proposed as low-carbon alternatives to emissions-intensive conventional ammonia production. Although much attention has been given to comparing these alternatives, it is still not clear which process has better environmental and economic performance. We present a techno-economic analysis and full life cycle assessment to compare the economics and environmental impacts of blue and green ammonia production. We address the importance of time horizon in climate change impact comparisons by employing the Technology Warming Potential, showing that methane leakage can exacerbate the climate change impacts of blue ammonia in short time horizons. We represent a constrained renewable electricity availability scenario by comparing the climate change impact mitigation efficiency per kWh of renewable electricity. Our work emphasizes the importance of maintaining low natural gas leakage for sustainability of blue ammonia, and the potential for technological advances to further reduce the environmental impacts of photovoltaics-based green ammonia.

4.
ACS Omega ; 8(23): 21223-21236, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332791

RESUMO

Oxidative coupling of methane (OCM) is a promising process for converting natural gas into high-value chemicals such as ethane and ethylene. The process, however, requires important improvements for commercialization. The foremost is increasing the process selectivity to C2 (C2H4 + C2H6) at moderate to high levels of methane conversion. These developments are often addressed at the catalyst level. However, optimization of process conditions can lead to very important improvements. In this study, a high-throughput screening (HTS) instrument was utilized for La2O3/CeO2 (3.3 mol % Ce) to generate a parametric data set within the temperature range of 600-800 °C, CH4/O2 ratio between 3 and 13, pressure between 1 and 10 bar, and catalyst loading between 5 and 20 mg leading to space-time between 40 and 172 s. Statistical design of experiments (DoE) was applied to gain insights into the effect of operating parameters and to determine the optimal operating conditions for maximum production of ethane and ethylene. Rate-of-production analysis was used to shed light on the elementary reactions involved in different operating conditions. The data obtained from HTS experiments established quadratic equations relating the studied process variables and output responses. The quadratic equations can be used to predict and optimize the OCM process. The results demonstrated that the CH4/O2 ratio and operating temperatures are key for controlling the process performance. Operating at higher temperatures with high CH4/O2 ratios increased the selectivity to C2 and minimized COx (CO + CO2) at moderate conversion levels. In addition to process optimization, DoE results also allowed the flexibility of manipulating the performance of OCM reaction products. A C2 selectivity of 61% and a methane conversion of 18% were found to be optimum at 800 °C, a CH4/O2 ratio of 7, and a pressure of 1 bar.

5.
Proc Natl Acad Sci U S A ; 120(10): e2220131120, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848575

RESUMO

Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.

6.
Angew Chem Int Ed Engl ; 61(42): e202209168, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895936

RESUMO

A crucial chain-branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain-branching, such as "Korcek" dissociation of γ-KHP to a carbonyl and an acid. Here we characterize the formation of a γ-KHP and its decomposition to formic acid+acetone products from observations of n-butane oxidation in two complementary experiments. In jet-stirred reactor measurements, KHP is observed above 590 K. The KHP concentration decreases with increasing temperature, whereas formic acid and acetone products increase. Observation of characteristic isotopologs acetone-d3 and formic acid-d0 in the oxidation of CH3 CD2 CD2 CH3 is consistent with a Korcek mechanism. In laser-initiated oxidation experiments of n-butane, formic acid and acetone are produced on the timescale of KHP removal. Modelling the time-resolved production of formic acid provides an estimated upper limit of 2 s-1 for the rate coefficient of KHP decomposition to formic acid+acetone.

7.
Phys Chem Chem Phys ; 24(20): 12601-12620, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35579396

RESUMO

The presence of two functional groups (OH and double bond) in C5 methyl-substituted enols (i.e., isopentenols), such as 3-methyl-2-buten-1-ol (prenol) and 3-methyl-3-buten-1-ol (isoprenol), makes them excellent biofuel candidates as fuel additives. As OH radicals are abundant in both combustion and atmospheric environments, OH-initiated oxidation of these isopentenols over wide ranges of temperatures and pressures needs to be investigated. In alkenes, OH addition to the double bond is prominent at low temperatures (i.e., below ∼700 K), and H-atom abstraction dominates at higher temperatures. However, we find that the OH-initiated oxidation of prenol and isoprenol displays a larger role for OH addition at higher temperatures. In this work, the reaction kinetics of prenol and isoprenol with OH radicals was investigated over the temperature range of 900-1290 K and pressure of 1-5 atm by utilizing a shock tube and OH laser diagnostic. To rationalize these chemical systems, variational transition state theory calculations with multi-structural torsional anharmonicity and small curvature tunneling corrections were run using a potential energy surface characterized at the UCCSD(T)/jun-cc-pVQZ//M06-2X/6-311++G(2df,2pd) level of theory. A good agreement was observed between the experiment and theory, with both predicting a non-Arrhenius behavior and negligible pressure effects. OH additions to the double bond of prenol and isoprenol were found to be important, with at least 50% contribution to the total rate constants even at temperatures as high as 700 and 2000 K, respectively. This behavior was attributed to the stabilizing effect induced by hydrogen bonding between the reacting OH radical and the OH functional group of isopentenols at the saddle points. These stabilizing intermolecular interactions help mitigate the entropic effects that hinder association reactions as temperature increases, thus extending the prominent role of addition pathways to high temperatures. The site-specific rate constants were also found to be slower than their analogous reactions of OH + n-alkenes.

8.
Commun Chem ; 5(1): 111, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36697675

RESUMO

High-performance fuel design is imperative to achieve cleaner burning and high-efficiency engine systems. We introduce a data-driven artificial intelligence (AI) framework to design liquid fuels exhibiting tailor-made properties for combustion engine applications to improve efficiency and lower carbon emissions. The fuel design approach is a constrained optimization task integrating two parts: (i) a deep learning (DL) model to predict the properties of pure components and mixtures and (ii) search algorithms to efficiently navigate in the chemical space. Our approach presents the mixture-hidden vector as a linear combination of each single component's vectors in each blend and incorporates it into the network architecture (the mixing operator (MO)). We demonstrate that the DL model exhibits similar accuracy as competing computational techniques in predicting the properties for pure components, while the search tool can generate multiple candidate fuel mixtures. The integrated framework was evaluated to showcase the design of high-octane and low-sooting tendency fuel that is subject to gasoline specification constraints. This AI fuel design methodology enables rapidly developing fuel formulations to optimize engine efficiency and lower emissions.

9.
ACS Omega ; 6(49): 33757-33768, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926924

RESUMO

Oxidative coupling of methane (OCM) is a promising technique for converting methane to higher hydrocarbons in a single reactor. Catalytic OCM is known to proceed via both gas-phase and surface chemical reactions. It is essential to first implement an accurate gas-phase model and then to further develop comprehensive homogeneous-heterogeneous OCM reaction networks. In this work, OCM gas-phase kinetics using a jet-stirred reactor are studied in the absence of a catalyst and simulated using a 0-D reactor model. Experiments were conducted in OCM-relevant operating conditions under various temperatures, residence times, and inlet CH4/O2 ratios. Simulations of different gas-phase models related to methane oxidation were implemented and compared against the experimental data. Quantities of interest (QoI) and rate of production analyses on hydrocarbon products were also performed to evaluate the models. The gas-phase models taken from catalytic reaction networks could not adequately describe the experimental gas-phase performances. NUIGMech1.1 was selected as the most comprehensive model to describe the OCM gas-phase kinetics; it is recommended for further use as the gas-phase model for constructing homogeneous-heterogeneous reaction networks.

10.
J Phys Chem A ; 125(15): 3177-3188, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33834773

RESUMO

Nicotine exposure results in health risks not only for smokers but also for second- and third-hand smokers. Unraveling nicotine's degradation mechanism and the harmful chemicals that are produced under different conditions is vital to assess exposure risks. We performed a theoretical study to describe the early chemistry of nicotine degradation by investigating two important reactions that nicotine can undergo: hydrogen abstraction by hydroxyl radicals and unimolecular dissociation. The former contributes to the control of the degradation mechanism below 800 K due to a non-Arrhenius kinetics, which implies an enhancement of reactivity as temperature decreases. The latter becomes important at higher temperatures due to its larger activation energy. This change in the degradation mechanism is expected to affect the composition of vapors inhaled by smokers and room occupants. Conventional cigarettes, which operate at temperatures higher than 1000 K, are more prone to yield harmful pyridinyl radicals via nicotine dissociation, while nicotine in electronic cigarettes and vaporizers, with operating temperatures below 600 K, will be more likely degraded by hydroxyl radicals, resulting in a vapor with a different composition. Although low-temperature nicotine delivery devices have been claimed to be less harmful due to their nonburning operating conditions, the non-Arrhenius kinetics that we observed for the degradation mechanism below 873 K suggests that nicotine degradation may be more rapidly initiated as temperature is reduced, indicating that these devices may be more harmful than it is commonly assumed.


Assuntos
Nicotina/metabolismo , Fumantes , Dispositivos para Fumar , Produtos do Tabaco , Temperatura Alta , Humanos , Cinética , Conformação Molecular , Nicotina/química , Teoria Quântica
11.
Commun Chem ; 4(1): 18, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36697513

RESUMO

Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O2. This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NOX, which typically rapidly terminates autoxidation in urban areas, the studied C6-C10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.

12.
Commun Biol ; 3(1): 457, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820203

RESUMO

Methods to produce protein amyloid fibrils, in vitro, and in situ structure characterization, are of primary importance in biology, medicine, and pharmacology. We first demonstrated the droplet on a super-hydrophobic substrate as the reactor to produce protein amyloid fibrils with real-time monitoring of the growth process by using combined light-sheet microscopy and thermal imaging. The molecular structures were characterized by Raman spectroscopy, X-ray diffraction and X-ray scattering. We demonstrated that the convective flow induced by the temperature gradient of the sample is the main driving force in the growth of well-ordered protein fibrils. Particular attention was devoted to PHF6 peptide and full-length Tau441 protein to form amyloid fibrils. By a combined experimental with the molecular dynamics simulations, the conformational polymorphism of these amyloid fibrils were characterized. The study provided a feasible procedure to optimize the amyloid fibrils formation and characterizations of other types of proteins in future studies.


Assuntos
Amiloide/química , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos , Amiloide/ultraestrutura , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Dobramento de Proteína , Análise Espectral , Relação Estrutura-Atividade , Difração de Raios X
13.
J Phys Chem A ; 124(31): 6277-6286, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32663402

RESUMO

The system-specific quantum Rice-Ramsperger-Kassel (SS-QRRK) theory (J. Am. Chem. Soc. 2016, 138, 2690) is suitable to determine rate constants below the high-pressure limit. Its current implementation allows incorporating variational effects, multidimensional tunneling, and multistructural torsional anharmonicity in rate constant calculations. Master equation solvers offer a more rigorous approach to compute pressure-dependent rate constants, but several implementations available in the literature do not incorporate the aforementioned effects. However, the SS-QRRK theory coupled with a formulation of the modified strong collision model underestimates the value of unimolecular pressure-dependent rate constants in the high-temperature regime for reactions involving large molecules. This underestimation is a consequence of the definition for collision efficiency, which is part of the energy transfer model. Selection of the energy transfer model and its parameters constitutes a common issue in pressure-dependent calculations. To overcome this underestimation problem, we evaluated and implemented in a bespoke Python code two alternative definitions for the collision efficiency using the SS-QRRK theory and tested their performance by comparing the pressure-dependent rate constants with the Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) results. The modeled systems were the tautomerization of propen-2-ol and the decomposition of 1-propyl, 1-butyl, and 1-pentyl radicals. One of the tested definitions, which Dean et al. explicitly derived (Z. Phys. Chem. 2000, 214, 1533), corrected the underestimation of the pressure-dependent rate constants and, in addition, qualitatively reproduced the trend of RRKM/ME data. Therefore, the used SS-QRRK theory with accurate definitions for the collision efficiency can yield results that are in agreement with those from more sophisticated methodologies such as RRKM/ME.

14.
J Phys Chem A ; 124(31): 6270-6276, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32648745

RESUMO

In spite of increasing importance of cyclic hydrocarbons in various chemical systems, studies on the fundamental properties of these compounds, such as enthalpy of formation, are still scarce. One of the reasons for this is the fact that the estimation of the thermodynamic properties of cyclic hydrocarbon species via cost-effective computational approaches, such as group additivity (GA), has several limitations and challenges. In this study, a machine learning (ML) approach is proposed using a support vector regression (SVR) algorithm to predict the standard enthalpy of formation of cyclic hydrocarbon species. The model is developed based on a thoroughly selected dataset of accurate experimental values of 192 species collected from the literature. The molecular descriptors used as input to the SVR are calculated via alvaDesc software, which computes in total 5255 features classified into 30 categories. The developed SVR model has an average error of approximately 10 kJ/mol. In comparison, the SVR model outperforms the GA approach for complex molecules and can be therefore proposed as a novel data-driven approach to estimate enthalpy values for complex cyclic species. A sensitivity analysis is also conducted to examine the relevant features that play a role in affecting the standard enthalpy of formation of cyclic species. Our species dataset is expected to be updated and expanded as new data are available to develop a more accurate SVR model with broader applicability.

15.
J Phys Chem A ; 124(27): 5646-5656, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574048

RESUMO

The Waddington mechanism, or the Waddington-type reaction pathway, is crucial for low-temperature oxidation of both alkenes and alcohols. In this study, the Waddington mechanism in the oxidation chemistry of butene and butanol isomers was systematically investigated. Fundamental quantum chemical calculations were conducted for the rate constants and thermodynamic properties of the reactions and species in this mechanism. Calculations were performed using two different ab initio solvers: Gaussian 09 and Orca 4.0.0, and two different kinetic solvers: PAPR and MultiWell, comprehensively. Temperature- and pressure-dependent rate constants were performed based on the transition state theory, associated with the Rice Ramsperger Kassel Marcus and master equation theories. Temperature-dependent thermochemistry (enthalpies of formation, entropy, and heat capacity) of all major species was also conducted, based on the statistical thermodynamics. Of the two types of reaction, dissociation reactions were significantly faster than isomerization reactions, while the rate constants of both reactions converged toward higher temperatures. In comparison, between two ab initio solvers, the barrier height difference among all isomerization and dissociation reactions was about 2 and 0.5 kcal/mol, respectively, resulting in less than 50%, and a factor of 2-10 differences for the predicted rate coefficients of the two reaction types, respectively. Comparing the two kinetic solvers, the rate constants of the isomerization reactions showed less than a 32% difference, while the rate of one dissociation reaction (P1 ↔ WDT12) exhibited 1-2 orders of magnitude discrepancy. Compared with results from the literature, both reaction rate coefficients (R4 and R5 reaction systems) and species' thermochemistry (all closed shell molecules and open shell radicals R4 and R5) showed good agreement with the corresponding values obtained from the literature. All calculated results can be directly used for the chemical kinetic model development of butene and butanol isomer oxidation.

16.
Tob Control ; 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457207

RESUMO

OBJECTIVES: To identify the chemicals released in I Quit Ordinary Smoking (IQOS) heat-not-burn tobacco aerosol and to assess their potential human health toxicity. METHODS: The heating temperature window of the IQOS heat-not-burn device was determined using a thermographic camera over a period of 100 s. Qualitative studies were performed using a novel real-time gas chromatograph-mass spectrometer set-up. Aerosols from six tobacco-flavoured IQOS HeatSticks (Amber, Blue, Bronze, Sienna, Turquoise and Yellow) were collected in a 1 mL loop via a manual syringe attached to the sample-out port of the valve. The gas transport line was heated to 200°C in order to prevent the condensation of volatile species. Compound identification was performed using the NIST11 mass spectrometry database library (US National Institute of Standards and Technology), where only chemicals with a match of 70% and above were listed as identifiable. RESULTS: The temperature profile of the IQOS device revealed a non-combustive process employed in generating the tobacco aerosol. Real-time qualitative analysis revealed 62 compounds encompassing a broad spectrum of chemicals such as carbonyls, furans and phthalates, which are highly toxic. DISCUSSION: Our findings complement the qualitative studies previously performed by Philip Morris International and others via indirect sampling methods. By analysing the aerosols in real time, we have identified a total of 62 compounds, from which only 10 were in common with previous studies. Several identified species such as diacetyl, 2,3-pentanedione, hydroxymethylfurfural and diethylhexyl phthalate are classified as highly toxic, with the latter considered carcinogenic.

17.
J Phys Chem A ; 124(19): 3896-3903, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32345025

RESUMO

Significant evidence has shown that soot can be formed from polycyclic aromatic hydrocarbon (PAH) in combustion environments, but the transition of high molecular PAH from the gas phase to soot in a liquid or solid state remains unclear. In this study, the relationships between the boiling points of various planar PAHs and their thermodynamic properties are systematically investigated, to find a satisfactory marker for the phase transition event. Temperature-dependent thermodynamic properties, including entropy, specific heat capacity, enthalpy, and Gibbs free energy, are simultaneously calculated for PAHs, using density functional theory and three composite compound methods. Comparison of the results indicates that the individual G3 method, plus an atomization reaction approach, produces the most accurate thermochemistry parameters. Compared to entropy, enthalpy, and Gibbs free energy, the specific heat capacity at 298 K is found to be a better marker for the boiling point of PAHs due to the observed linear correlation, predictable characteristics, and fidelity of accuracy as a function of temperature. The correlation equation Y = 10.996X + 122.111 is proposed (where Y is the boiling temperature (K) and X is Cp at 298 K (cal/K/mol)). The standard deviation is as low as 16.7 K when comparing the calculated boiling points and experimentally determined values for 25 different aromatic species ranging from benzene to ovalene (C32H14). The effects of carbon number, structural arrangement, and partial pressure on the boiling point of large planar PAH are discussed. The results reveal that the carbon number in large planar PAH is the dominant factor determining its boiling points. It is shown that PAHs containing about 60-65 carbon atoms are likely to exist as liquids in flames, although the partial pressure of such species is very low.

18.
Phys Chem Chem Phys ; 22(16): 9029-9039, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32293625

RESUMO

Radical-radical association reactions are challenging to address theoretically due to difficulties finding the bottleneck that variationally minimizes the reactive flux. For this purpose, the variable reaction coordinate (VRC) formulation of the variational transition state theory (VTST) represents an appropriate tool. In this work, we revisited the kinetics of two radical-radical association reactions of importance in combustion modelling and poly-aromatic hydrocarbon (PAH) chemistry by performing VRC calculations: benzyl + HO2 and benzoxyl + OH, both forming the adduct benzyl hydroperoxide. Our calculated rate constants are significantly lower than those previously reported based on VTST calculations, which results from a more efficient minimization of the reactive flux through the bottleneck achieved by the VRC formulation. Both reactions show different trends in the variation of their rate constants with temperature. We observed that if the pair of single occupied molecular orbitals (SOMOs) of the associating radicals show a similar nature, i.e. similar character, and thereby a small energy gap, a highly stabilized transition state structure is formed as the result of a very efficient SOMO-SOMO overlap, which may cancel out the free energy bottleneck for the formation of the adduct and result in large rate constants with a negative temperature dependence. This is the case of the benzoxyl and OH radical pair, whose SOMOs show O2p nature with an energy gap of 20.2 kcal mol-1. On the other hand, the benzyl and HO2 radical pair shows lower rate constants with a positive temperature dependence due to the larger difference between both SOMOs (a 28.9 kcal mol-1 energy gap) as a consequence of the contribution of the multiple resonance structures of the benzyl radical. The reverse dissociation rate constants were also calculated using multi-structural torsional anharmonicity partition functions, which were not included in previous work, and the results show a much slower dissociation of benzyl hydroperoxide. Our work may help to improve kinetic models of interest in combustion and PAH formation, as well as to gain further understanding of radical-radical association reactions, which are ubiquitous in different environments.

19.
Rapid Commun Mass Spectrom ; 34(4): e8596, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31756786

RESUMO

RATIONALE: The compositional and structural information of soot particles is essential for a better understanding of the chemistry and mechanism during the combustion. The aim of the present study was to develop a method to analyze such soot particulate samples with high complexity and poor solubility. METHODS: The solvent-free sample preparation matrix-assisted laser desorption/ionization (MALDI) technique was combined with the ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) for the characterization of solid soot particulates. Moreover, a modified iso-abundance plot (Carbon Number vs. Hydrogen Number vs. Abundance) was introduced to visualize the distributions of various chemical species, and to examine the agreement between the hydrogen-abstraction-carbon-addition (HACA) mechanism and the polycyclic aromatic hydrocarbon growth in the investigated flame system. RESULTS: This solvent-free MALDI method enabled the effective ionization of the solid soot particulates without any dissolving procedure. With the accurate m/z ratios from FTICR-MS, a unique chemical formula was assigned to each of the recorded mass signals. The combustion products were proven to be mainly large polycyclic aromatic hydrocarbons (PAHs), together with a small amount (<5%) of oxidized hydrocarbons. CONCLUSIONS: The developed method provides a new approach for the molecular characterization of soot particulates like carbonaceous materials. The investigated soot particulates are mainly PAHs with no or very short aliphatic chains. The growth mechanism of PAHs during combustion can be examined against the classic HACA mechanism.

20.
PLoS One ; 14(12): e0226094, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31846455

RESUMO

Lactate in the brain is considered an important fuel and signalling molecule for neuronal activity, especially during neuronal activation. Whether lactate is shuttled from astrocytes to neurons or from neurons to astrocytes leads to the contradictory Astrocyte to Neuron Lactate Shuttle (ANLS) or Neuron to Astrocyte Lactate Shuttle (NALS) hypotheses, both of which are supported by extensive, but indirect, experimental evidence. This work explores the conditions favouring development of ANLS or NALS phenomenon on the basis of a model that can simulate both by employing the two parameter sets proposed by Simpson et al. (J Cereb. Blood Flow Metab., 27:1766, 2007) and Mangia et al. (J of Neurochemistry, 109:55, 2009). As most mathematical models governing brain metabolism processes, this model is multi-scale in character due to the wide range of time scales characterizing its dynamics. Therefore, we utilize the Computational Singular Perturbation (CSP) algorithm, which has been used extensively in multi-scale systems of reactive flows and biological systems, to identify components of the system that (i) generate the characteristic time scale and the fast/slow dynamics, (ii) participate to the expressions that approximate the surfaces of equilibria that develop in phase space and (iii) control the evolution of the process within the established surfaces of equilibria. It is shown that a decisive factor on whether the ANLS or NALS configuration will develop during neuronal activation is whether the lactate transport between astrocytes and interstitium contributes to the fast dynamics or not. When it does, lactate is mainly generated in astrocytes and the ANLS hypothesis is realised, while when it doesn't, lactate is mainly generated in neurons and the NALS hypothesis is realised. This scenario was tested in exercise conditions.


Assuntos
Encéfalo/metabolismo , Ácido Láctico/metabolismo , Modelos Teóricos , Algoritmos , Astrócitos/citologia , Astrócitos/metabolismo , Humanos , Neurônios/citologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA