Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Elife ; 112022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35635439

RESUMO

Cortical dynamics are organized over multiple anatomical and temporal scales. The mechanistic origin of the temporal organization and its contribution to cognition remain unknown. Here, we demonstrate the cause of this organization by studying a specific temporal signature (time constant and latency) of neural activity. In monkey frontal areas, recorded during flexible decisions, temporal signatures display specific area-dependent ranges, as well as anatomical and cell-type distributions. Moreover, temporal signatures are functionally adapted to behaviourally relevant timescales. Fine-grained biophysical network models, constrained to account for experimentally observed temporal signatures, reveal that after-hyperpolarization potassium and inhibitory GABA-B conductances critically determine areas' specificity. They mechanistically account for temporal signatures by organizing activity into metastable states, with inhibition controlling state stability and transitions. As predicted by models, state durations non-linearly scale with temporal signatures in monkey, matching behavioural timescales. Thus, local inhibitory-controlled metastability constitutes the dynamical core specifying the temporal organization of cognitive functions in frontal areas.


Assuntos
Cognição , Animais , Haplorrinos
2.
Front Neural Circuits ; 15: 648538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305535

RESUMO

In the prefrontal cortex (PFC), higher-order cognitive functions and adaptive flexible behaviors rely on continuous dynamical sequences of spiking activity that constitute neural trajectories in the state space of activity. Neural trajectories subserve diverse representations, from explicit mappings in physical spaces to generalized mappings in the task space, and up to complex abstract transformations such as working memory, decision-making and behavioral planning. Computational models have separately assessed learning and replay of neural trajectories, often using unrealistic learning rules or decoupling simulations for learning from replay. Hence, the question remains open of how neural trajectories are learned, memorized and replayed online, with permanently acting biological plasticity rules. The asynchronous irregular regime characterizing cortical dynamics in awake conditions exerts a major source of disorder that may jeopardize plasticity and replay of locally ordered activity. Here, we show that a recurrent model of local PFC circuitry endowed with realistic synaptic spike timing-dependent plasticity and scaling processes can learn, memorize and replay large-size neural trajectories online under asynchronous irregular dynamics, at regular or fast (sped-up) timescale. Presented trajectories are quickly learned (within seconds) as synaptic engrams in the network, and the model is able to chunk overlapping trajectories presented separately. These trajectory engrams last long-term (dozen hours) and trajectory replays can be triggered over an hour. In turn, we show the conditions under which trajectory engrams and replays preserve asynchronous irregular dynamics in the network. Functionally, spiking activity during trajectory replays at regular timescale accounts for both dynamical coding with temporal tuning in individual neurons, persistent activity at the population level, and large levels of variability consistent with observed cognitive-related PFC dynamics. Together, these results offer a consistent theoretical framework accounting for how neural trajectories can be learned, memorized and replayed in PFC networks circuits to subserve flexible dynamic representations and adaptive behaviors.


Assuntos
Educação a Distância , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação/fisiologia , Humanos
3.
Int Rev Neurobiol ; 158: 395-419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785153

RESUMO

The ability to integrate information across time at multiple timescales is a vital element of adaptive behavior, because it provides the capacity to link events separated in time, extract useful information from previous events and actions, and to construct plans for behavior over time. Here we make the argument that this information integration capacity is a central function of the midcingulate cortex (MCC), by reviewing the anatomical, intrinsic network, neurophysiological, and behavioral properties of MCC. The MCC is the region of the medial wall situated dorsal to the corpus callosum and sometimes referred to as dACC. It is positioned within the densely connected core network of the primate brain, with a rich diversity of cognitive, somatomotor and autonomic connections. Furthermore, the MCC shows strong local network inhibition which appears to control the metastability of the region-an established feature of many cortical networks in which the neural dynamics move through a series of quasi-stationary states. We propose that the strong local inhibition in MCC leads to particularly long dynamic state durations, and so less frequent transitions. Apparently as a result of these anatomical features and synaptic and ionic determinants, the MCC cells display the longest neuronal timescales among a range of recorded cortical areas. We conclude that the anatomical position, intrinsic properties, and local network interactions of MCC make it a uniquely positioned cortical area to perform the integration of diverse information over time that is necessary for behavioral adaptation.


Assuntos
Processamento Eletrônico de Dados , Giro do Cíngulo , Animais , Giro do Cíngulo/fisiologia , Inibição Psicológica , Primatas , Fatores de Tempo
4.
J Neurosci ; 38(22): 5209-5219, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712783

RESUMO

Persistent neural activity, the substrate of working memory, is thought to emerge from synaptic reverberation within recurrent networks. However, reverberation models do not robustly explain the fundamental dynamics of persistent activity, including high-spiking irregularity, large intertrial variability, and state transitions. While cellular bistability may contribute to persistent activity, its rigidity appears incompatible with persistent activity labile characteristics. Here, we unravel in a cellular model a form of spike-mediated conditional bistability that is robust and generic. and provides a rich repertoire of mnemonic computations. Under asynchronous synaptic inputs of the awakened state, conditional bistability generates spiking/bursting episodes, accounting for the irregularity, variability, and state transitions characterizing persistent activity. This mechanism has likely been overlooked because of the subthreshold input it requires, and we predict how to assess it experimentally. Our results suggest a reexamination of the role of intrinsic properties in the collective network dynamics responsible for flexible working memory.SIGNIFICANCE STATEMENT This study unravels a novel form of intrinsic neuronal property: conditional bistability. We show that, thanks to its conditional character, conditional bistability favors the emergence of flexible and robust forms of persistent activity in PFC neural networks, in opposition to previously studied classical forms of absolute bistability. Specifically, we demonstrate for the first time that conditional bistability (1) is a generic biophysical spike-dependent mechanism of layer V pyramidal neurons in the PFC and that (2) it accounts for essential neurodynamical features for the organization and flexibility of PFC persistent activity (the large irregularity and intertrial variability of the discharge and its organization under discrete stable states), which remain unexplained in a robust fashion by current models.


Assuntos
Algoritmos , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Canais de Cálcio/fisiologia , Simulação por Computador , Humanos , Modelos Neurológicos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Células Piramidais/fisiologia , Sinapses , Vigília/fisiologia , Substância Branca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA