Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 943: 173649, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852865

RESUMO

This research builds upon a previous study that explored the potential of the modified WIBS-4+ to selectively differentiate and detect different bioaerosol classes. The current work evaluates the influence of meteorological and air quality parameters on bioaerosol concentrations, specifically pollen and fungal spore dynamics. Temperature was found to be the most influential parameter in terms of pollen production and release, showing a strong positive correlation. Wind data analysis provided insights into the potential geographic origins of pollen and fungal spore concentrations. Fungal spores were primarily shown to originate from a westerly direction, corresponding to agricultural land use, whereas pollen largely originated from a North-easterly direction, corresponding to several forests. The influence of air quality was also analysed to understand its potential impact on the WIBS fluorescent parameters investigated. Most parameters had a negative association with fungal spore concentrations, whereas several anthropogenic influences showed notable positive correlations with daily pollen concentrations. This is attributed to similar driving forces (meteorological parameters) and geographical origins. In addition, the WIBS showed a significant correlation with anthropogenic pollutants originating from combustion sources, suggesting the potential for such modified spectroscopic instruments to be utilized as air quality monitors. By combining all meteorological and pollution data along with WIBS-4+ channel data, a set of Multiple Linear Regression (MLR) analyses were completed. Successful results with R2 values ranging from 0.6 to 0.8 were recorded. The inclusion of meteorological parameters was dependent on the spore or pollen type being examined.

2.
Environ Int ; 186: 108610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626495

RESUMO

Greater Cairo, the largest megacity of the Middle East North Africa (MENA) region, is currently suffering from major aerosol pollution, posing a significant threat to public health. However, the main sources of pollution remain insufficiently characterized due to limited atmospheric observations. To bridge this knowledge gap, we conducted a continuous 2-month field study during the winter of 2019-2020 at an urban background site, documenting for the first time the chemical and physical properties of submicron (PM1) aerosols. Crustal material from both desert dust and road traffic dust resuspension contributed as much as 24 % of the total PM1 mass (rising to 66 % during desert dust events), a figure not commonly observed in urban environments. Our observations showed significant decreases in black carbon concentrations and ammonium sulfate compared to data from 15 years ago, indicating an important reduction in both local and regional emissions as a result of effective mitigation measures. The diurnal variability of carbonaceous aerosols was attributed to emissions emanating from local traffic at rush hours and nighttime open biomass burning. Surprisingly, semi-volatile ammonium chloride (NH4Cl) originating from local open biomass and waste burning was found to be the main chemical species in PM1 over Cairo. Its nighttime formation contributed to aerosol water uptake during morning hours, thereby playing a major role in the build-up of urban haze. While our results confirm the persistence of a significant dust reservoir over Cairo, they also unveil an additional source of highly hygroscopic (semi-volatile) inorganic salts, leading to a unique type of urban haze. This haze, with dominant contributors present in both submicron (primarily as NH4Cl) and supermicron (largely as dust) modes, underscores the potential implications of heterogeneous chemical transformation of air pollutants in urban environments.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Egito , Poluição do Ar/estatística & dados numéricos , Material Particulado/análise , Cidades , Poeira/análise , Tamanho da Partícula
3.
Sci Total Environ ; 900: 165799, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37499822

RESUMO

In Central Europe the most common allergies are provoked by grass or birch pollen allergens. We determined the intra-daily behavior of airborne pollen grains of grasses (Poaceae) and birch (Betula ssp.) in Central Europe, based on data obtained from a network of automatic pollen monitors over Europe (www.pollenscience.eu). Our aim was to determine the time of day when the lowest concentrations occur, to provide allergic individuals the optimal time to ventilate their homes. The study was carried out in three Central European capitals, Berlin (Germany), Paris-Saclay (France), and Luxembourg (Luxembourg), as well as in eight stations in Germany (Altötting, Feucht, Garmisch-Partenkirchen, Hof, Marktheidenfeld, Mindelheim, Munich and Viechtach). The diurnal rhythm of these eleven locations was analyzed for either the complete, first week, peak week, peak day and last week of the pollen season. The data studied were reported as pollen/m3 measured in 3 h periods. Stations were classified as city, semi-populated or countryside areas using land-use and population density criteria. Grass pollen has a more pronounced diurnal rhythm than birch pollen concentrations. A significant difference was observed when comparing day (6-21 h) versus night (21-6 h) for all stations. No difference was detected between city and countryside for both pollen types, although for Poaceae a longer period of maximum concentrations was observed in big cities and higher day/night-time differences were registered in the countryside (6.4) than in cities (3.0). The highest pollen concentrations were observed between 9 and 18 h for grass, but the rhythm was less pronounced for birch pollen. For allergic individuals who want to bring in fresh air in their homes, we recommend opening windows after 21 h, but even better early in the morning between 6 and 9 h before pollinations (re)starts.


Assuntos
Hipersensibilidade , Poaceae , Humanos , Betula , Pólen , Alérgenos , Europa (Continente) , Estações do Ano
4.
Sensors (Basel) ; 22(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36433340

RESUMO

The real-time monitoring of primary biological aerosol particles (PBAP) such as pollen and fungal spores has received much attention in recent years as a result of their health and climatic effects. In this study, the Wideband Integrated Bioaerosol Sensor (WIBS) 4+ model was evaluated for its ability to sample and detect ambient fungal spore and pollen concentrations, compared to the traditional Hirst volumetric method. Although the determination of total pollen and fungal spore ambient concentrations are of interest, the selective detection of individual pollen/fungal spore types are often of greater allergenic/agricultural concern. To aid in this endeavour, modifications were made to the WIBS-4 instrument to target chlorophyll fluorescence. Two additional fluorescence channels (FL4 and FL5 channels) were combined with the standard WIBS channels (FL1, FL2, FL3). The purpose of this modification is to help discriminate between grass and herb pollen from other pollen. The WIBS-4+ was able to successfully detect and differentiate between different bioaerosol classes. The addition of the FL4 and FL5 channels also allowed for the improved differentiation between tree (R2 = 0.8), herbaceous (R2 = 0.6) and grass (R2 = 0.4) pollen and fungal spores (R2 = 0.8). Both grass and herbaceous pollen types showed a high correlation with D type particles, showing strong fluorescence in the FL4 channel. The additional fluorescent data that were introduced also improved clustering attempts, making k-means clustering a comparable solution for this high-resolution data.


Assuntos
Monitoramento Ambiental , Pólen , Esporos Fúngicos , Monitoramento Ambiental/métodos , Pólen/química , Alérgenos , Aerossóis , Poaceae
5.
Aerobiologia (Bologna) ; 38(3): 343-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199733

RESUMO

Respiratory allergies triggered by pollen allergens represent a significant health concern to the Irish public. Up to now, Ireland has largely refrained from participating in long-term aerobiological studies. Recently, pollen monitoring has commenced in several sampling locations around Ireland. The first results of the pollen monitoring campaigns for Dublin (urban) and Carlow (rural) concerning the period 2017-2019 and 2018-2019, respectively, are presented herein. Additional unpublished pollen data from 1978-1980 and, 2010-2011 were also incorporated in creating the first pollen calendar for Dublin. During the monitoring period over 60 pollen types were identified with an average Annual Pollen Integral (APIn) of 32,217 Pollen × day/m3 for Dublin and 78,411 Pollen × day/m3 for Carlow. The most prevalent pollen types in Dublin were: Poaceae (32%), Urticaceae (29%), Cupressaceae/Taxaceae (11%), Betula (10%), Quercus (4%), Pinus (3%), Fraxinus (2%), Alnus (2%) and Platanus (1%). The predominant pollen types in Carlow were identified as Poaceae (70%), Urticaceae (12%), Betula (10%), Quercus (2%), Fraxinus (1%) and Pinus (1%). These prevalent pollen types increased in annual pollen concentration in both locations from 2018 to 2019 except for Fraxinus. Although higher pollen concentrations were observed for the Carlow (rural) site a greater variety of pollen types were identified for the Dublin (urban) site. The general annual trend in the pollen season began with the release of tree pollen in early spring, followed by the release of grass and herbaceous pollen which dominated the summer months with the annual pollen season coming to an end in October. This behaviour was illustrated for 21 different pollen types in the Dublin pollen calendar. The correlation between ambient pollen concentration and meteorological parameters was also examined and differed greatly depending on the location and study year. A striking feature was a substantial fraction of the recorded pollen sampled in Dublin did not correlate with the prevailing wind directions. However, using non-parametric wind regression, specific source regions could be determined such as Alnus originating from the Southeast, Betula originating from the East and Poaceae originating from the Southwest. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-022-09751-w.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32872373

RESUMO

Background: The monitoring of bioaerosol concentrations in the air is a relevant endeavor due to potential health risks associated with exposure to such particles and in the understanding of their role in climate. In this context, the atmospheric concentrations of bacteria were measured from January 2018 to May 2020 at Saclay, France. The aim of the study was to understand the seasonality, the daily variability, and to identify the geographical origin of airborne bacteria. Methods: 880 samples were collected daily on polycarbonate filters, extracted with purified water, and analyzed using the cultivable method and flow cytometry. A source receptor model was used to identify the origin of bacteria. Results: A tri-modal seasonality was identified with the highest concentrations early in spring and over the summer season with the lowest during the winter season. Extreme changes occurred daily due to rapid changes in meteorological conditions and shifts from clean air masses to polluted ones. Conclusion: Our work points toward bacterial concentrations originating from specific seasonal-geographical ecosystems. During pollution events, bacteria appear to rise from dense urban areas or are transported long distances from their sources. This key finding should drive future actions to better control the dispersion of potential pathogens in the air, like persistent microorganisms originating from contaminated areas.


Assuntos
Poluentes Atmosféricos , Bactérias , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Ecossistema , França , Estações do Ano
7.
Sci Total Environ ; 711: 135055, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810669

RESUMO

Wood burning is widely used for domestic heating and has been identified as a ubiquitous pollution source in urban areas, especially during cold months. The present study is based on a three and a half winter months field campaign in the Paris region measuring Volatile Organic Compounds (VOCs) by Proton Transfer Reaction Mass Spectrometry (PTR-MS) in addition to Black Carbon (BC). Several VOCs were identified as strongly wood burning-influenced (e.g., acetic acid, furfural), or traffic-influenced (e.g., toluene, C8-aromatics). Methylbutenone, benzenediol and butandione were identified for the first time as wood burning-related in ambient air. A Positive Matrix Factorization (PMF) analysis highlighted that wood burning is the most important source of VOCs during the winter season. (47%). Traffic was found to account for about 22% of the measured VOCs during the same period, whereas solvent use plus background accounted altogether for the remaining fraction. The comparison with the regional emission inventory showed good consistency for benzene and xylenes but revisions of the inventory should be considered for several VOCs such as acetic acid, C9-aromatics and methanol. Finally, complementary measurements acquired simultaneously at other sites in Île-de-France (the Paris region) enabled evaluation of spatial variabilities. The influence of traffic emissions on investigated pollutants displayed a clear negative gradient from roadside to suburban stations, whereas wood burning pollution was found to be fairly homogeneous over the region.

8.
Sci Total Environ ; 712: 135598, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31791771

RESUMO

Agricultural activities highly contribute to atmospheric pollution, but the diversity and the magnitude of their emissions are still subject to large uncertainties. A field measurement campaign was conducted to characterize gaseous and particulate emissions from an experimental farm in France containing a sheep pen and a dairy stable. During the campaign, more than four hundred volatile organic compounds (VOCs) were characterized using an original combination of online and off-line measurements. Carbon dioxide (CO2) and ammonia (NH3) were the most concentrated compounds inside the buildings, followed by methanol, acetic acid and acetaldehyde. A CO2 mass balance model was used to estimate NH3 and VOC emission rates. To our knowledge, this study constitutes the first evaluation of emission rates for most of the identified VOCs. The measurements show that the dairy stable emitted more VOCs than the sheep pen. Despite strong VOC and NH3 emissions, the chemical composition of particles indicates that gaseous farm emissions do not affect the loading of fine particles inside the farm and is mainly explained by the low residence time inside the buildings. The experimental dataset obtained in this work will help to improve emissions inventories for agricultural activities.

9.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 50-59, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29971833

RESUMO

RATIONALE: Secondary organic aerosols (SOAs) represent a significant portion of total atmospheric aerosols. They are generated by the oxidation of volatile organic compounds (VOCs), and particularly biogenic VOCs (BVOCs). The analysis of such samples is usually performed by targeted methods that often require time-consuming preparation steps that can induce loss of compounds and/or sample contaminations. METHODS: Recently, untargeted methods using high-resolution mass spectrometry (HRMS) have been successfully employed for a broad characterization of chemicals in SOAs. Herein we propose a new application of the direct analysis in real time (DART) ionization method combined with HRMS to quickly detect several hundred chemicals in SOAs collected on a quartz filter without sample preparation or separation techniques. RESULTS: The reproducibility of measurements was good, with several hundred elemental compositions common to three different replicates. The relative standard deviations of the intensities of the chemical families ranged from 6% to 35%, with sufficient sensitivity to allow the unambiguous detection of 4 ng/mm2 of pinic acid. The presence of oligomers and specific tracers was highlighted by MSn (n ≤ 4) experiments, an achievement that is difficult to attain with other ultrahigh-resolution mass spectrometers. Contributions of this untargeted DART-HRMS method were illustrated by the analysis of fresh and aged SOAs from different gaseous precursors such as limonene, a ß-pinene/limonene mixture or scots pines emissions. CONCLUSIONS: The results show that it is possible to use DART-HRMS for the identification of tracers of specific aging reactions, or for the identification of aerosols from specific biogenic precursors.


Assuntos
Aerossóis/análise , Espectrometria de Massas/métodos , Monoterpenos/análise , Compostos Orgânicos Voláteis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Monoterpenos/química , Oxirredução , Compostos Orgânicos Voláteis/química
10.
Environ Sci Technol ; 50(2): 814-24, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26655249

RESUMO

Angstrom exponent measurements of equivalent black carbon (BCeq) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to the BCeq mass. The BCeq is the mass of ideal BC with defined optical properties that, upon deposition on the aethalometer filter tape, would cause equal optical attenuation of light to the actual PM2.5 aerosol deposited. The BCeq mass hence is identical to the mass of the total light-absorbing carbon deposited on the filter tape. Here, we use simultaneously collected data from a seven-wavelength aethalometer and a high-sensitivity proton-transfer reaction mass spectrometer installed at a suburban site in Mohali (Punjab), India, to identify a number of biomass combustion plumes. The identified types of biomass combustion include paddy- and wheat-residue burning, leaf litter, and garbage burning. Traffic plumes were selected for comparison. We find that the combustion efficiency, rather than the fuel used, determines αabs, and consequently, the αabs can be ∼1 for flaming biomass combustion and >1 for older vehicles that operate with poorly optimized engines. Thus, the absorption angstrom exponent is not representative of the fuel used and, therefore, cannot be used as a generic tracer to constrain source contributions.


Assuntos
Fuligem/análise , Aerossóis/análise , Biomassa , Carbono , Incêndios , Índia , Luz , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA