Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Commun ; 15(1): 5516, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951494

RESUMO

Nanoscale flows of liquids can be revealed in various biological processes and underlie a wide range of nanofluidic applications. Though the integral characteristics of these systems, such as permeability and effective diffusion coefficient, can be measured in experiments, the behaviour of the flows within nanochannels is still a matter of speculation. Herein, we used a combination of quadrupolar solid-state NMR spectroscopy, computer simulation, and dynamic vapour sorption measurements to analyse water diffusion inside peptide nanochannels. We detected a helical water flow coexisting with a conventional axial flow that are independent of each other, immiscible, and associated with diffusion coefficients that may differ up to 3 orders of magnitude. The trajectory of the helical flow is dictated by the screw-like distribution of ionic groups within the channel walls, while its flux is governed by external water vapour pressure. Similar flows may occur in other types of nanochannels containing helicoidally distributed ionic groups and be exploited in various nanofluidic lab-on-a-chip devices.

2.
ACS Omega ; 9(16): 17956-17965, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680344

RESUMO

This study delves into the potential advantage of utilizing crab shells as sustainable solid adsorbents for CO2 capture, offering an environmentally friendly alternative to conventional porous adsorbents, such as zeolites, silicas, metal-organic frameworks (MOFs), and porous carbons. The investigation focuses on crab shell waste, which exhibits inherent natural porosity and N-bearing groups, making them promising candidates for CO2 physisorption and chemisorption applications. Selective deproteinization and demineralization treatments were used to enhance textural properties while preserving the natural porous structure of the crab shells. The impact of deproteinization and demineralization treatments on CO2 adsorption and speciation at the atomic scale, via solid-state NMR, and correlated findings with textural properties and biomass composition were investigated. The best-performing sample exhibits a surface area of 36 m2/g and a CO2 adsorption capacity of 0.31 mmol/g at 1 bar and 298 K, representing gains of ∼3.5 and 2, respectively, compared to the pristine crab shell. These results underline the potential of fishing industry wastes as a cost-effective, renewable, and eco-friendly source to produce functional porous adsorbents.

3.
Chem Commun (Camb) ; 60(30): 4015-4035, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38525497

RESUMO

This comprehensive review describes recent advancements in the use of solid-state NMR-assisted methods and computational modeling strategies to unravel gas adsorption mechanisms and CO2 speciation in porous CO2-adsorbent silica materials at the atomic scale. This work provides new perspectives for the innovative modifications of these materials rendering them more amenable to the use of advanced NMR methods.

4.
Anal Chem ; 95(27): 10384-10389, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37376721

RESUMO

Additive manufacturing such as three-dimensional (3D)-printing has revolutionized the fast and low-cost fabrication of otherwise expensive NMR parts. High-resolution solid-state NMR spectroscopy demands rotating the sample at a specific angle (54.74°) inside a pneumatic turbine, which must be designed to achieve stable and high spinning speeds without mechanical friction. Moreover, instability of the sample rotation often leads to crashes, resulting in costly repairs. Producing these intricate parts requires traditional machining, which is time-consuming, costly, and relies on specialized labor. Herein, we show that 3D-printing can be used to fabricate the sample holder housing (stator) in one shot, while the radiofrequency (RF) solenoid was constructed using conventional materials available in electronics stores. The 3D-printed stator, equipped with a homemade RF coil, showed remarkable spinning stability, yielding high-quality NMR data. At a cost below 5 €, the 3D-printed stator represents a cost reduction of over 99% compared to repaired commercial stators, illustrating the potential of 3D-printing for mass-producing affordable magic-angle spinning stators.

5.
Colloids Surf B Biointerfaces ; 227: 113341, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210796

RESUMO

The combination of in vitro models of biological membranes based on solid-supported lipid bilayers (SLBs) and of surface sensitive techniques, such as neutron reflectometry (NR), atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D), is well suited to provide quantitative information about molecular level interactions and lipid spatial distributions. In this work, cellular plasma membranes have been mimicked by designing complex SLB, containing phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) lipids as well as incorporating synthetic lipo-peptides that simulate the cytoplasmic tails of transmembrane proteins. The QCM-D results revealed that the adsorption and fusion kinetics of PtdIns4,5P2 are highly dependent of Mg2+. Additionally, it was shown that increasing concentrations of PtdIns4,5P2 leads to the formation of SLBs with higher homogeneity. The presence of PtdIns4,5P2 clusters was visualized by AFM. NR provided important insights about the structural organization of the various components within the SLB, highlighting that the leaflet symmetry of these SLBs is broken by the presence of CD4-derived cargo peptides. Finally, we foresee our study to be a starting point for more sophisticated in vitro models of biological membranes with the incorporation of inositol phospholipids and synthetic endocytic motifs.


Assuntos
Fosfatidilinositóis , Técnicas de Microbalança de Cristal de Quartzo , Fosfatidilinositóis/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Microscopia de Força Atômica , Bicamadas Lipídicas/química , Peptídeos/química , Nêutrons
6.
J Am Chem Soc ; 145(16): 8764-8769, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37037457

RESUMO

Adsorption isotherms obtained through volumetric measurements are widely used to estimate the gas adsorption performance of porous materials. Nonetheless, there is always ambiguity regarding the contributions of chemi- and physisorption processes to the overall retained gas volume. In this work, we propose, for the first time, the use of solid-state NMR (ssNMR) to generate isotherms of CO2 adsorbed onto an amine-modified silica sorbent. This method enables the separation of six individual isotherms for chemi- and physisorbed CO2 components, a feat only possible using the discrimination power of NMR spectroscopy. The adsorption mechanism for each adsorbed species was ascertained by tracking their adsorption profiles at various pressures. The proposed method was validated against conventional volumetric adsorption measurements. The isotherm curves obtained by the proposed ssNMR-assisted approach enable advanced analysis of the sorbents, revealing the potential of variable-pressure NMR experiments in gas adsorption applications.

7.
J Phys Chem C Nanomater Interfaces ; 126(30): 12582-12591, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35968194

RESUMO

Previous studies on CO2 adsorbents have mainly addressed the identification and quantification of adsorbed CO2 species in amine-modified porous materials. Investigation of molecular motion of CO2 species in confinement has not been explored in depth yet. This work entails a comprehensive study of molecular dynamics of the different CO2 species chemi- and physisorbed at amine-modified silica materials through the determination of the rotating frame spin-lattice relaxation times (T 1ρ) by solid-state NMR. Rotational correlation times (τC) were also estimated using spin relaxation models based on the Bloch, Wangsness, and Redfield and the Bloembergen-Purcell-Pound theories. As expected, the τC values for the two physisorbed CO2 species are considerably shorter (32 and 20 µs) than for the three identified chemisorbed CO2 species (162, 62, and 123 µs). The differences in molecular dynamics between the different chemisorbed species correlate well with the structures previously proposed. In the case of the physisorbed CO2 species, the τC values of the CO2 species displaying faster molecular dynamics falls in the range of viscous liquids, whereas the species presenting slower dynamics exhibit T 1ρ and τC values compatible with a CO2 layer of weakly interacting molecules with the silica surface. The values for chemical shift anisotropy (CSA) and 1H-13C heteronuclear dipolar couplings have also been estimated from T 1ρ measurements, for each adsorbed CO2 species. The CSA tensor parameters obtained from fitting the relaxation data agree with the experimentally measured CSA values, thus showing that the theories are well suited to study CO2 dynamics in silica surfaces.

8.
J Mater Chem A Mater ; 9(9): 5542-5555, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-34671479

RESUMO

This work entails a comprehensive solid-state NMR and computational study of the influence of water and CO2 partial pressures on the CO2-adducts formed in amine-grafted silica sorbents. Our approach provides atomic level insights on hypothesised mechanisms for CO2 capture under dry and wet conditions in a tightly controlled atmosphere. The method used for sample preparation avoids the use of liquid water slurries, as performed in previous studies, enabling a molecular level understanding, by NMR, of the influence of controlled amounts of water vapor (down to ca. 0.7 kPa) in CO2 chemisorption processes. Details on the formation mechanism of moisture-induced CO2 species are provided aiming to study CO2 : H2O binary mixtures in amine-grafted silica sorbents. The interconversion between distinct chemisorbed CO2 species was quantitatively monitored by NMR under wet and dry conditions in silica sorbents grafted with amines possessing distinct bulkiness (primary and tertiary). Particular attention was given to two distinct carbonyl environments resonating at δ C ∼161 and 155 ppm, as their presence and relative intensities are greatly affected by moisture depending on the experimental conditions. 1D and 2D NMR spectral assignments of both these 13C resonances were assisted by density functional theory calculations of 1H and 13C chemical shifts on model structures of alkylamines grafted onto the silica surface that validated various hydrogen-bonded CO2 species that may occur upon formation of bicarbonate, carbamic acid and alkylammonium carbamate ion pairs. Water is a key component in flue gas streams, playing a major role in CO2 speciation, and this work extends the current knowledge on chemisorbed CO2 structures and their stabilities under dry/wet conditions, on amine-modified solid surfaces.

9.
J Phys Chem C Nanomater Interfaces ; 125(27): 14797-14806, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34567337

RESUMO

Although spectroscopic investigation of surface chemisorbed CO2 species has been the focus of most studies, identifying different domains of weakly interacting (physisorbed) CO2 molecules in confined spaces is less trivial as they are often indistinguishable resorting to (isotropic) NMR chemical shift or vibrational band analyses. Herein, we undertake for the first time a thorough solid-state NMR analysis of CO2 species physisorbed prior to and after amine-functionalization of silica surfaces; combining 13C NMR chemical shift anisotropy (CSA) and longitudinal relaxation times (T 1). These methods were used to quantitatively distinguish otherwise overlapping physisorbed CO2 signals, which contributed to an empirical model of CO2 speciation for the physi- and chemisorbed fractions. The quantitatively measured T 1 values confirm the presence of CO2 molecular dynamics on the microsecond, millisecond, and second time scales, strongly supporting the existence of up to three physisorbed CO2 species with proportions of about 15%, 15%, and 70%, respectively. Our approach takes advantage from using adsorbed 13C-labeled CO2 as probe molecules and quantitative cross-polarization magic-angle spinning to study both physi- and chemisorbed CO2 species, showing that 45% of chemisorbed CO2 versus 55% of physisorbed CO2 is formed from the overall confined CO2 in amine-modified hybrid silicas. A total of six distinct CO2 environments were identified from which three physisorbed CO2 were discriminated, coined here as "gas, liquid, and solid-like" CO2 species. The complex nature of physisorbed CO2 in the presence and absence of chemisorbed CO2 species is revealed, shedding light on what fractions of weakly interacting CO2 are affected upon pore functionalization. This work extends the current knowledge on CO2 sorption mechanisms providing new clues toward CO2 sorbent optimization.

10.
Angew Chem Int Ed Engl ; 59(1): 487-495, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659848

RESUMO

Heptazine-based polymeric carbon nitrides (PCN) are promising photocatalysts for light-driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom-up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi-homogeneous conditions. The superior performance of water-soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2 O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4-methoxybenzyl alcohol and benzyl alcohol or lignocellulose-derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re-dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity.

11.
Chem Commun (Camb) ; 55(84): 12635-12638, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31580363

RESUMO

Two-dimensional 1H-31P heteronuclear correlation NMR of trimethylphosphine oxide (TMPO) adsorbed in zeolites, in tandem with DFT calculations, challenges previous one-dimensional 31P NMR assignments, enabling the unambiguous discrimination of Brønsted and Lewis acid sites, extending the understanding of TMPO:Brønsted complexes formed with distinct stoichiometries at the HZSM-5 zeolite surface, and the proton-transfer mechanism.

12.
Environ Sci Technol ; 53(5): 2758-2767, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30730709

RESUMO

Chemisorbent materials, based on porous aminosilicas, are among the most promising adsorbents for direct air capture applications, one of the key technologies to mitigate carbon emissions. Herein, a critical survey of all reported chemisorbed CO2 species, which may form in aminosilica surfaces, is performed by revisiting and providing new experimental proofs of assignment of the distinct CO2 species reported thus far in the literature, highlighting controversial assignments regarding the existence of chemisorbed CO2 species still under debate. Models of carbamic acid, alkylammonium carbamate with different conformations and hydrogen bonding arrangements were ascertained using density functional theory (DFT) methods, mainly through the comparison of the experimental 13C and 15N NMR chemical shifts with those obtained computationally. CO2 models with variable number of amines and silanol groups were also evaluated to explain the effect of amine aggregation in CO2 speciation under confinement. In addition, other less commonly studied chemisorbed CO2 species (e.g., alkylammonium bicarbonate, ditethered carbamic acid and silylpropylcarbamate), largely due to the difficulty in obtaining spectroscopic identification for those, have also been investigated in great detail. The existence of either neutral or charged (alkylammonium siloxides) amine groups, prior to CO2 adsorption, is also addressed. This work extends the molecular-level understanding of chemisorbed CO2 species in amine-oxide hybrid surfaces showing the benefit of integrating spectroscopy and theoretical approaches.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Adsorção , Aminas , Inquéritos e Questionários
13.
Magn Reson Chem ; 57(5): 243-255, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30475406

RESUMO

Hydrogen bonds (HBs) play a key role in the supramolecular arrangement of crystalline solids and, although they have been extensively studied, the influence of their strength and geometry on crystal packing remains poorly understood. Here we describe the crystal structures of two novel protic gabapentin (GBP) pharmaceutical salts prepared with the coformers methanesulfonic acid (GBP:METHA) and ethanesulfonic acid (GBP:ETHA). This study encompasses experimental and computational electronic structure analyses of 1 H NMR chemical shifts (CSs), upon in silico HB cleavage. GBP:METHA and GBP:ETHA crystal packing comprise two main structural domains: an ionic layer (characterized by the presence of charge-assisted + NHGBP ⋯O-METHA/ETHA HB interactions) and a neutral layer generated in a different way for each salt, mainly due to the presence of bifurcated HB interactions. A comprehensive study of HB networks is presented for GBP:METHA, by isolating molecular fragments involved in distinct HB types (NH⋯O, OH⋯O, and CH⋯O) obtained from in silico disassembling of an optimized three-dimensional packing structure. Formation of HB leads to calculated 1 H NMR CS changes from 0.4 to ~5.8 ppm. This study further attempts to assess how 1 H NMR CS of protons engaged in certain HB are affected when other nearby HB, involving bifurcated or geminal/vicinal hydrogen atoms, are removed.

14.
Chemistry ; 24(40): 10136-10145, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29663545

RESUMO

The wealth of site-selective structural information on CO2 speciation, obtained by spectroscopic techniques, is often hampered by the lack of easy-to-control synthetic routes. Herein, an alternative experimental protocol that relies on the high sensitivity of 13 C chemical shift anisotropy (CSA) tensors to proton transfer, is presented to unambiguously distinguish between ionic/charged and neutral CO2 species, formed upon adsorption of 13 CO2 in amine-modified porous materials. Control of the surface amine spacing was achieved through the use of amine protecting groups during functionalisation prior to CO2 adsorption. This approach enabled the formation of either "isolated" or "paired" carbamate/carbamic acid species, providing a first experimental NMR proof towards the identification of both aggregation states. Computer modelling of surface CO2 -amine adducts assisted the solid-state NMR assignments and validated various hydrogen-bond arrangements occurring upon formation of isolated/aggregated carbamic acid and alkylammonium carbamate ion species. This work extends the understanding of chemisorbed CO2 structures formed at pore surfaces and reveals structural insight about the protonation source responsible for the proton-transfer mechanism in such aggregates.

15.
Solid State Nucl Magn Reson ; 65: 49-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25604487

RESUMO

We present the structure of a new equimolar 1:1 cocrystal formed by 3,5-dimethyl-1H-pyrazole (dmpz) and 4,5-dimethyl-1H-imidazole (dmim), determined by means of powder X-ray diffraction data combined with solid-state NMR that provided insight into topological details of hydrogen bonding connectivities and weak interactions such as CH···π contacts. The use of various 1D/2D (13)C, (15)N and (1)H high-resolution solid-state NMR techniques provided structural insight on local length scales revealing internuclear proximities and relative orientations between the dmim and dmpz molecular building blocks of the studied cocrystal. Molecular modeling and DFT calculations were also employed to generate meaningful structures. DFT refinement was able to decrease the figure of merit R(F(2)) from ~11% (PXRD only) to 5.4%. An attempt was made to rationalize the role of NH···N and CH···π contacts in stabilizing the reported cocrystal. For this purpose four imidazole derivatives with distinct placement of methyl substituents were reacted with dmpz to understand the effect of methylation in blocking or enabling certain intermolecular contacts. Only one imidazole derivative (dmim) was able to incorporate into the dmpz trimeric motif thus resulting in a cocrystal, which contains both hydrophobic (methyl groups) and hydrophilic components that self-assemble to form an atypical 1D network of helicoidal hydrogen bonded pattern, featuring structural similarities with alpha-helix arrangements in proteins. The 1:1 dmpz···dmim compound I is the first example of a cocrystal formed by two different azoles.

16.
Colloids Surf B Biointerfaces ; 112: 237-44, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988779

RESUMO

The studies of potentiation of 5-fluorouracil (5-FU), a traditional drug used in the treatment of several cancers, including colorectal (CRC), were carried out with zeolites Faujasite in the sodium form, with different particle sizes (NaY, 700nm and nanoNaY, 150nm) and Linde type L in the potassium form (LTL) with a particle size of 80nm. 5-FU was loaded into zeolites by liquid-phase adsorption. Characterization by spectroscopic techniques (FTIR, (1)H NMR and (13)C and (27)Al solid-state MAS NMR), chemical analysis, thermal analysis (TGA), nitrogen adsorption isotherms and scanning electron microscopy (SEM), demonstrated the successful loading of 5-FU into the zeolite hosts. In vitro drug release studies (PBS buffer pH 7.4, 37°C) revealed the release of 80-90% of 5-FU in the first 10min. To ascertain the drug release kinetics, the release profiles were fitted to zero-order, first-order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas and Weibull kinetic models. The in vitro dissolution from the drug delivery systems (DDS) was explained by the Weibull model. The DDS efficacy was evaluated using two human colorectal carcinoma cell lines, HCT-15 and RKO. Unloaded zeolites presented no toxicity to both cancer cells, while all DDS allowed an important potentiation of the 5-FU effect on the cell viability. Immunofluorescence studies provided evidence for zeolite-cell internalization.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Fluoruracila/administração & dosagem , Nanocápsulas/química , Zeolitas , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Portadores de Fármacos/química , Fluoruracila/farmacocinética , Humanos , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Biomol NMR ; 56(4): 365-77, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23807391

RESUMO

In this article, we describe third-spin assisted heteronuclear recoupling experiments, which play an increasingly important role in measuring long-range heteronuclear couplings, in particular (15)N-(13)C, in proteins. In the proton-assisted insensitive nuclei cross polarization (PAIN-CP) experiment (de Paëpe et al. in J Chem Phys 134:095101, 2011), heteronuclear polarization transfer is always accompanied by homonuclear transfer of the proton-assisted recoupling (PAR) type. We present a phase-alternating experiment that promotes heteronuclear (e.g. (15)N → (13)C) polarization transfer while simultaneously minimizing homonuclear (e.g.(13)C → (13)C) transfer (PAIN without PAR). This minimization of homonuclear polarization transfer is based on the principle of the resonant second-order transfer (RESORT) recoupling scheme where the passive proton spins are irradiated by a phase-alternating sequence and the modulation frequency is matched to an integer multiple of the spinning frequency. The similarities and differences between the PAIN-CP and this het-RESORT experiment are discussed here.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Prótons , Marcadores de Spin , Simulação por Computador , Cristalização , Ubiquitina/química
18.
J Phys Chem A ; 116(25): 6711-9, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22612309

RESUMO

We present a complete set of experimental approaches for the NMR assignment of powdered tripeptide glutathione at natural isotopic abundance, based on J-coupling and dipolar NMR techniques combined with (1)H CRAMPS decoupling. To fully assign the spectra, two-dimensional (2D) high-resolution methods, such as (1)H-(13)C INEPT-HSQC/PRESTO heteronuclear correlations (HETCOR), (1)H-(1)H double-quantum (DQ), and (1)H-(14)N D-HMQC correlation experiments, have been used. To support the interpretation of the experimental data, periodic density functional theory calculations together with the GIPAW approach have been used to calculate the (1)H and (13)C chemical shifts. It is found that the shifts calculated with two popular plane wave codes (CASTEP and Quantum ESPRESSO) are in excellent agreement with the experimental results.


Assuntos
Glutationa/química , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Teoria Quântica , Modelos Moleculares
19.
Chemistry ; 16(26): 7741-9, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20544749

RESUMO

The supramolecular salt [H(2)pip](3)[Ge(hedp)(2)].14H(2)O (1) [H(2)pip(2+)=piperazine cation C(4)H(12)N(2)(2+); hedp(5-)=deprotonated form of etidronic acid, C(2)H(3)P(2)O(7)(5-)) is reported. This consists of an organic-inorganic hybrid hydrogen-bonded nanoporous framework, the internal surface of which acts as a template for the three-dimensional (3D) clustering of water molecules. The structure and molecular dynamics of this material are characterised by single-crystal X-ray diffraction, thermogravimetric analysis, Raman (H/D isotopic substitution) spectroscopy, and (2)H solid-state (wide-line and MAS) NMR spectroscopy. Material 1 is shown to be unusual because 1) few nanoporous materials exhibit a well-organised 3D framework of water molecules, 2) it provides a unique opportunity to follow experimentally and to rationalise the deconstruction of a 3D water framework and 3) despite the fact that the hybrid framework is a supramolecular salt, the structure does not collapse after dehydration and the final material is crystalline.


Assuntos
Piperazinas/química , Água/química , Cátions/química , Quimera , Cristalografia por Raios X , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares
20.
Phys Chem Chem Phys ; 11(34): 7437-43, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19690716

RESUMO

Raman and surface-enhanced Raman scattering (SERS) of 5-fluorouracil (5-FU) have been recorded under several experimental conditions. SERS spectra have been analysed according to a resonant charge-transfer (CT) mechanism similar to a resonance Raman (RR) process, involving the photoinduced transfer of an electron from the Fermi level of the metal to vacant orbitals of the adsorbate (SERS-CT). In order to detect the enhancement mechanism and to identify the chemical species that give rise to the spectra, the theoretical SERS-CT intensities for the dienolic and diketo forms, and its respective N1 and N3 deprotonated anions (5-FU(-)), have been calculated and compared with the experimental results. In this way, the presence of N1 deprotonated anion is confirmed by SERS given that the calculated SERS-CT intensities predict the selective enhancement of the band at ca. 1680 cm(-1) in agreement with the experiment. Therefore, the metal-to-adsorbate CT process involves the transient formation of the respective radical dianion (5-FU (2-)), which is new evidence of the relevance of the CT enhancement mechanism in SERS.


Assuntos
Fluoruracila/química , Nanopartículas Metálicas/química , Prata/química , Adsorção , Algoritmos , Antimetabólitos Antineoplásicos/química , Estrutura Molecular , Análise Espectral Raman/métodos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA