Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Physiol Plant ; 175(6): e14074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148226

RESUMO

Priming-mediated stress tolerance in plants stimulates defense mechanisms and enables plants to cope with future stresses. Seed priming has been proven effective for tolerance against abiotic stresses; however, underlying genetic mechanisms are still unknown. We aimed to assess upland cotton genotypes and their transcriptional behaviors under salt priming and successive induced salt stress. We pre-selected 16 genotypes based on previous studies and performed morpho-physiological characterization, from which we selected three genotypes, representing different tolerance levels, for transcriptomic analysis. We subjected these genotypes to four different treatments: salt priming (P0), salt priming with salinity dose at 3-true-leaf stage (PD), salinity dose at 3-true-leaf stage without salt priming (0D), and control (CK). Although the three genotypes displayed distinct expression patterns, we identified common differentially expressed genes (DEGs) under PD enriched in pathways related to transferase activity, terpene synthase activity, lipid biosynthesis, and regulation of acquired resistance, indicating the beneficial role of salt priming in enhancing salt stress resistance. Moreover, the number of unique DEGs associated with G. hirsutum purpurascens was significantly higher compared to other genotypes. Coexpression network analysis identified 16 hub genes involved in cell wall biogenesis, glucan metabolic processes, and ribosomal RNA binding. Functional characterization of XTH6 (XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE) using virus-induced gene silencing revealed that suppressing its expression improves plant growth under salt stress. Overall, findings provide insights into the regulation of candidate genes in response to salt stress and the beneficial effects of salt priming on enhancing defense responses in upland cotton.


Assuntos
Perfilação da Expressão Gênica , Tolerância ao Sal , Tolerância ao Sal/genética , Estresse Salino/genética , Estresse Fisiológico/genética , Gossypium/genética , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 22(1): 331, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820810

RESUMO

BACKGROUND: Cotton production is adversely effected by drought stress. It is exposed to drought stress at various critical growth stages grown under a water scarcity environment. Roots are the sensors of plants; they detect osmotic stress under drought stress and play an important role in plant drought tolerance mechanisms. The seedling stage is very sensitive to drought stress, and it needed to explore the methods and plant characteristics that contribute to drought tolerance in cotton. RESULTS: Initially, seedlings of 18 genotypes from three Gossypium species: G. hirsutum, G. barbadense, and G. arboreum, were evaluated for various seedling traits under control (NS) and drought stress (DS). Afterward, six genotypes, including two of each species, one tolerant and one susceptible, were identified based on the cumulative drought sensitivity response index (CDSRI). Finally, growth rates (GR) were examined for shoot and root growth parameters under control and DS in experimental hydroponic conditions. A significant variation of drought stress responses was observed across tested genotypes and species. CDSRI allowed here to identify the drought-sensitive and drought-resistant cultivar of each investigated species. Association among root and shoots growth traits disclosed influential effects of enduring the growth under DS. The traits including root length, volume, and root number were the best indicators with significantly higher differential responses in the tolerant genotypes. These root growth traits, coupled with the accumulation of photosynthates and proline, were also the key indicators of the resistance to drought stress. CONCLUSION: Tolerant genotypes have advanced growth rates and the capacity to cop with drought stress by encouraging characteristics, including root differential growth traits coupled with physiological traits such as chlorophyll and proline contents. Tolerant and elite genotypes of G. hirsutum were more tolerant of drought stress than obsolete genotypes of G. barbadense and G. arboreum. Identified genotypes have a strong genetic basis of drought tolerance, which can be used in cotton breeding programs.


Assuntos
Gossypium , Plântula , Secas , Gossypium/genética , Melhoramento Vegetal , Prolina , Plântula/genética
3.
Front Genet ; 12: 758665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950189

RESUMO

The study of A-genome Asian cotton as a potential fiber donor in Gossypium species may offer an enhanced understanding of complex genetics and novel players related to fiber quality traits. Assessment of individual fibers providing classified fiber quality information to the textile industry is Advanced Fiber Information System (AFIS) in the recent technological era. Keeping the scenario, a diverse collection of 215 Asiatic cotton accessions were evaluated across three agro-ecological zones of China. Genome-Wide Association Studies (GWAS) was performed to detect association signals related to 17 AFIS fiber quality traits grouped into four categories viz: NEPs, fiber length, maturity, and fineness. Significant correlations were found within as well as among different categories of various traits related to fiber quality. Fiber fineness has shown a strong correlation to all other categories, whereas these categories are shown interrelationships via fiber-fineness. A total of 7,429 SNPs were found in association with 17 investigated traits, of which 177 were selected as lead SNPs. In the vicinity of these lead SNPs, 56 differentially expressed genes in various tissues/development stages were identified as candidate genes. This compendium connecting trait-SNP-genes may allow further prioritization of genes in GWAS loci to enable mechanistic studies. These identified quantitative trait nucleotides (QTNs) may prove helpful in fiber quality improvement in Asian cotton through marker-assisted breeding as well as in reviving eroded genetic factors of G. hirsutum via introgression breeding.

4.
J Genet Genomics ; 48(6): 473-484, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272194

RESUMO

Wild progenitors are an excellent source for strengthening the genetic basis and accumulation of desirable variation lost because of directional selection and adaptation in modern cultivars. Here, we re-evaluate a landrace of Gossypium hirsutum, formerly known as Gossypium purpurascens. Our study seeks to understand the genomic structure, variation, and breeding potential of this landrace, providing potential insights into the biogeographic history and genomic changes likely associated with domestication. A core set of accessions, including current varieties, obsolete accessions, G. purpurascens, and other geographical landraces, are subjected to genotyping along with multilocation phenotyping. Population fixation statistics suggests a marked differentiation between G. purpurascens and three other groups, emphasizing the divergent genomic behavior of G. purpurascens. Phylogenetic analysis establishes the primitive nature of G. purpurascens, identifying it as a vital source of functional variation, the inclusion of which in the upland cotton (cultivated G. hirsutum) gene pool may broaden the genetic basis of modern cultivars. Genome-wide association results indicate multiple loci associated with domestication regions corresponding to flowering and fiber quality. Moreover, the conserved nature of G. purpurascens can also provide insights into the evolutionary process of G. hirsutum.


Assuntos
Genoma de Planta , Gossypium/genética , Cromossomos de Plantas , Fibra de Algodão , Domesticação , Flores/genética , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Gossypium/classificação , Filogenia , Locos de Características Quantitativas/genética
5.
Plants (Basel) ; 10(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199872

RESUMO

Photosynthesis as a source is a significant contributor to the reproductive sink affecting cotton yield and fiber quality. Moreover, carbon assimilation from subtending leaves adds up a significant proportion to the reproductive sink. Therefore, this study aimed to address the source-sink relationship of boll subtending leaf with fiber quality and yield related traits in upland cotton. A core collection of 355 upland cotton accessions was subjected to subtending leaf removal treatment effects across 2 years. The analysis of variance suggested a significant effect range in the source-sink relationship under subtending leaf removal effects at different growth stages. Further insight into the variation was provided by the correlation analysis and principal component analysis. A significant positive correlation between different traits was observed and the multivariate analysis including hierarchical clustering and principal component analysis (PCA) categorised germplasm accessions into three groups on the basis of four subtending leaf removal treatment effects across 2 years. A set of genotypes with the lowest and highest treatment effects has been identified. Selected accessions and the outcome of the current study may provide a basis for a further study to explore the molecular mechanism of source-sink relationship of boll subtending leaf and utilization of breeding programs focused on cotton improvement.

6.
Front Plant Sci ; 12: 565552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093598

RESUMO

For about a century, plant breeding has widely exploited the heterosis phenomenon-often considered as hybrid vigor-to increase agricultural productivity. The ensuing F1 hybrids can substantially outperform their progenitors due to heterozygous combinations that mitigate deleterious mutations occurring in each genome. However, only fragmented knowledge is available concerning the underlying genes and processes that foster heterosis. Although cotton is among the highly valued crops, its improvement programs that involve the exploitation of heterosis are still limited in terms of significant accomplishments to make it broadly applicable in different agro-ecological zones. Here, F1 hybrids were derived from mating a diverse Upland Cotton germplasm with commercially valuable cultivars in the Line × Tester fashion and evaluated across multiple environments for 10 measurable traits. These traits were dissected into five different heterosis types and specific combining ability (SCA). Subsequent genome-wide predictions along-with association analyses uncovered a set of 298 highly significant key single nucleotide polymorphisms (SNPs)/Quantitative Trait Nucleotides (QTNs) and 271 heterotic Quantitative Trait Nucleotides (hQTNs) related to agronomic and fiber quality traits. The integration of a genome wide association study with RNA-sequence analysis yielded 275 candidate genes in the vicinity of key SNPs/QTNs. Fiber micronaire (MIC) and lint percentage (LP) had the maximum number of associated genes, i.e., each with 45 related to QTNs/hQTNs. A total of 54 putative candidate genes were identified in association with HETEROSIS of quoted traits. The novel players in the heterosis mechanism highlighted in this study may prove to be scientifically and biologically important for cotton biologists, and for those breeders engaged in cotton fiber and yield improvement programs.

7.
G3 (Bethesda) ; 11(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33846710

RESUMO

Cotton Verticillium wilt (VW) is a devastating disease seriously affecting fiber yield and quality, and the most effective and economical prevention measure at present is selection and extension of Gossypium varieties harboring high resistance to VW. However, multiple attempts to improve the VW resistance of the most widely cultivated upland cottons have made little significant progress. The introduction of chromosome segment substitution lines (CSSLs) provide the practical solutions for merging the superior genes related with high yield and wide adaptation from Gossypium hirsutum and VW resistance and the excellent fiber quality from Gossypium barbadense. In this study, 300 CSSLs were chosen from the developed BC5F3:5 CSSLs constructed from CCRI36 (G. hirsutum) and Hai1 (G. barbadense) to conduct quantitative trait locus (QTL) mapping of VW resistance, and a total of 40 QTL relevant to VW disease index (DI) were identified. Phenotypic data were obtained from a 2-year investigation in two fields with two replications per year. All the QTL were distributed on 21 chromosomes, with phenotypic variation of 1.05%-10.52%, and 21 stable QTL were consistent in at least two environments. Based on a meta-analysis, 34 novel QTL were identified, while 6 loci were consistent with previously identified QTL. Meanwhile, 70 QTL hotspot regions were detected, including 44 novel regions. This study concentrates on QTL identification and screening for hotspot regions related with VW in the 300 CSSLs, and the results lay a solid foundation not only for revealing the genetic and molecular mechanisms of VW resistance but also for further fine mapping, gene cloning and molecular designing in breeding programs for resistant cotton varieties.


Assuntos
Verticillium , Cromossomos de Plantas/genética , Gossypium/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas
8.
Front Plant Sci ; 12: 727835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095940

RESUMO

The ever-changing global environment currently includes an increasing ambient temperature that can be a devastating stress for organisms. Plants, being sessile, are adversely affected by heat stress in their physiology, development, growth, and ultimately yield. Since little is known about the response of biochemical traits to high-temperature ambiance, we evaluated eight parental lines (five lines and three testers) and their 15 F1 hybrids under normal and high-temperature stress to assess the impact of these conditions over 2 consecutive years. The research was performed under a triplicate randomized complete block design including a split-plot arrangement. Data were recorded for agronomic, biochemical, and fiber quality traits. Mean values of agronomic traits were significantly reduced under heat stress conditions, while hydrogen peroxide, peroxidase, total soluble protein, superoxide dismutase, catalase (CAT), carotenoids, and fiber strength displayed higher mean values under heat stress conditions. Under both conditions, high genetic advance and high heritability were observed for seed cotton yield (SCY), CAT, micronaire value, plant height, and chlorophyll-a and b content, indicating that an additive type of gene action controls these traits under both the conditions. For more insights into variation, Pearson correlation analysis and principal component analysis (PCA) were performed. Significant positive associations were observed among agronomic, biochemical, and fiber quality-related traits. The multivariate analyses involving hierarchical clustering and PCA classified the 23 experimental genotypes into four groups under normal and high-temperature stress conditions. Under both conditions, the F1 hybrid genotype FB-SHAHEEN × JSQ WHITE GOLD followed by Ghuari-1, CCRI-24, Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White Gold, and Eagle-2 exhibited better performance in response to high-temperature stress regarding the agronomic and fiber quality-related traits. The mentioned genotypes could be utilized in future cotton breeding programs to enhance heat tolerance and improve cotton yield and productivity through resistance to environmental stressors.

9.
Plant J ; 104(5): 1285-1300, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32996179

RESUMO

An evaluation of combining ability can facilitate the selection of suitable parents and superior F1 hybrids for hybrid cotton breeding, although the molecular genetic basis of combining ability has not been fully characterized. In the present study, 282 female parents were crossed with four male parents in accordance with the North Carolina II mating scheme to generate 1128 hybrids. The parental lines were genotyped based on restriction site-associated DNA sequencing and 306 814 filtered single nucleotide polymorphisms were used for genome-wide association analysis involving the phenotypes, general combining ability (GCA) values, and specific combining ability values of eight fiber quality- and yield-related traits. The main results were: (i) all parents could be clustered into five subgroups based on population structure analyses and the GCA performance of the female parents had significant differences between subgroups; (ii) 20 accessions with a top 5% GCA value for more than one trait were identified as elite parents for hybrid cotton breeding; (iii) 120 significant single nucleotide polymorphisms, clustered into 66 quantitative trait loci, such as the previously reported Gh_A07G1769 and GhHOX3 genes, were found to be significantly associated with GCA; and (iv) identified quantitative trait loci for GCA had a cumulative effect on GCA of the accessions. Overall, our results suggest that pyramiding the favorable loci for GCA may improve the efficiency of hybrid cotton breeding.


Assuntos
Fibra de Algodão , Gossypium/genética , Polimorfismo de Nucleotídeo Único , Quimera , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Gossypium/fisiologia , Haplótipos , Melhoramento Vegetal , Locos de Características Quantitativas
10.
Plants (Basel) ; 9(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503111

RESUMO

Upland cotton is the most economically important fibre crop. The human-mediated selection has resulted in modern upland cultivars with higher yield and better fibre quality. However, changes in genome structure resulted from human-mediated selection are poorly understood. Comparative population genomics offers us tools to dissect the genetic history of domestication and helps to understand the genome-wide effects of human-mediated selection. Hereby, we report a comprehensive assessment of Gossypium hirsutum landraces, obsolete cultivars and modern cultivars based on high throughput genome-wide sequencing of the core set of genotypes. As a result of the genome-wide scan, we identified 93 differential regions and 311 selection sweeps associated with domestication and improvement. Furthermore, we performed genome-wide association studies to identify traits associated with the differential regions and selection sweeps. Our study provides a genetic basis to understand the domestication process in Chinese cotton cultivars. It also provides a comprehensive insight into changes in genome structure due to selection and improvement during the last century. We also identified multiple genome-wide associations (GWAS associations) for fibre yield, quality and other morphological characteristics.

11.
BMC Genomics ; 19(1): 776, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373509

RESUMO

BACKGROUND: Heterosis, a multigenic complex trait extrapolated as sum total of many phenotypic features, is widely utilized phenomenon in agricultural crops for about a century. It is mainly focused on establishing vigorous cultivars with the fact that its deployment in crops necessitates the perspective of genomic impressions on prior selection for metric traits. In spite of extensive investigations, the actual mysterious genetic basis of heterosis is yet to unravel. Contemporary crop breeding is aimed at enhanced crop production overcoming former achievements. Leading cotton improvement programs remained handicapped to attain significant accomplishments. RESULTS: In mentioned context, a comprehensive project was designed involving a large collection of cotton accessions including 284 lines, 5 testers along with their respective F1 hybrids derived from Line × Tester mating design were evaluated under 10 diverse environments. Heterosis, GCA and SCA were estimated from morphological and fiber quality traits by L × T analysis. For the exploration of elite marker alleles related to heterosis and to provide the material carrying such multiple alleles the mentioned three dependent variables along with trait phenotype values were executed for association study aided by microsatellites in mixed linear model based on population structure and linkage disequilibrium analysis. Highly significant 46 microsatellites were discovered in association with the fiber and yield related traits under study. It was observed that two-thirds of the highly significant associated microsatellites related to fiber quality were distributed on D sub-genome, including some with pleiotropic effect. Newly discovered 32 hQTLs related to fiber quality traits are one of prominent findings from current study. A set of 96 exclusively favorable alleles were discovered and C tester (A971Bt) posited a major contributor of these alleles primarily associated with fiber quality. CONCLUSIONS: Hence, to uncover hidden facts lying within heterosis phenomenon, discovery of additional hQTLs is required to improve fibre quality. To grab prominent improvement in influenced fiber quality and yield traits, we suggest the A971 Bt cotton cultivar as fundamental element in advance breeding programs as a parent of choice.


Assuntos
Heterogeneidade Genética , Gossypium/genética , Vigor Híbrido , Estudos de Associação Genética , Genótipo , Repetições de Microssatélites , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Característica Quantitativa Herdável
12.
BMC Genomics ; 17: 197, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26951621

RESUMO

BACKGROUND: The identification of quantitative trait loci (QTLs) that are stable and consistent across multiple environments and populations plays an essential role in marker-assisted selection (MAS). In the present study, we used 28,861 simple sequence repeat (SSR) markers, which included 12,560 Gossypium raimondii (D genome) sequence-based SSR markers to identify polymorphism between two upland cotton strains 0-153 and sGK9708. A total of 851 polymorphic primers were finally selected and used to genotype 196 recombinant inbred lines (RIL) derived from a cross between 0 and 153 and sGK9708 and used to construct a linkage map. The RIL population was evaluated for fiber quality traits in six locations in China for five years. Stable QTLs identified in this intraspecific cross could be used in future cotton breeding program and with fewer obstacles. RESULTS: The map covered a distance of 4,110 cM, which represents about 93.2 % of the upland cotton genome, and with an average distance of 5.2 cM between adjacent markers. We identified 165 QTLs for fiber quality traits, of which 47 QTLs were determined to be stable across multiple environments. Most of these QTLs aggregated into clusters with two or more traits. A total of 30 QTL clusters were identified which consisted of 103 QTLs. Sixteen clusters in the At sub-genome comprised 44 QTLs, whereas 14 clusters in the Dt sub-genome that included 59 QTLs for fiber quality were identified. Four chromosomes, including chromosome 4 (c4), c7, c14, and c25 were rich in clusters harboring 5, 4, 5, and 6 clusters respectively. A meta-analysis was performed using Biomercator V4.2 to integrate QTLs from 11 environmental datasets on the RIL populations of the above mentioned parents and previous QTL reports. Among the 165 identified QTLs, 90 were identified as common QTLs, whereas the remaining 75 QTLs were determined to be novel QTLs. The broad sense heritability estimates of fiber quality traits were high for fiber length (0.93), fiber strength (0.92), fiber micronaire (0.85), and fiber uniformity (0.80), but low for fiber elongation (0.27). Meta-clusters on c4, c7, c14 and c25 were identified as stable QTL clusters and were considered more valuable in MAS for the improvement of fiber quality of upland cotton. CONCLUSION: Multiple environmental evaluations of an intraspecific RIL population were conducted to identify stable QTLs. Meta-QTL analyses identified a common chromosomal region that plays an important role in fiber development. Therefore, QTLs identified in the present study are an ideal candidate for MAS in cotton breeding programs to improve fiber quality.


Assuntos
Fibra de Algodão , Gossypium/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , DNA de Plantas/genética , Meio Ambiente , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Fenótipo , Melhoramento Vegetal , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA