Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Commun ; 14(1): 4609, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528080

RESUMO

5-hydroxymethylfurfural (HMF) is a valuable and essential platform chemical for establishing a sustainable, eco-friendly fine-chemical and pharmaceutical industry based on biomass. The cost-effective production of HMF from abundant C6 sugars requires mild reaction temperatures and efficient catalysts from naturally abundant materials. Herein, we report how fulvic acid forms complexes with Al3+ ions that exhibit solar absorption and photocatalytic activity for glucose conversion to HMF in one-pot reaction, in good yield (~60%) and at moderate temperatures (80 °C). When using representative components of fulvic acid, catechol and pyrogallol as ligands, 70 and 67% HMF yields are achieved, respectively, at 70 °C. Al3+ ions are not recognised as effective photocatalysts; however, complexing them with fulvic acid components as light antennas can create new functionality. This mechanism offers prospects for new green photocatalytic systems to synthesise a range of substances that have not previously been considered.

2.
Angew Chem Int Ed Engl ; 62(4): e202215201, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36450692

RESUMO

Selective activation of the C(sp3 )-H bond is an important process in organic synthesis, where efficiently activating a specific C(sp3 )-H bond without causing side reactions remains one of chemistry's great challenges. Here we report that illuminated plasmonic silver metal nanoparticles (NPs) can abstract hydrogen from the C(sp3 )-H bond of the Cα atom of an alkyl aryl ether ß-O-4 linkage. The intense electromagnetic near-field generated at the illuminated plasmonic NPs promotes chemisorption of the ß-O-4 compound and the transfer of photo-generated hot electrons from the NPs to the adsorbed molecules leads to hydrogen abstraction and direct cleavage of the unreactive ether Cß -O bond under moderate reaction conditions (≈90 °C). The plasmon-driven process has certain exceptional features: enabling hydrogen abstraction from a specific C(sp3 )-H bond, along with precise scission of the targeted C-O bond to form aromatic compounds containing unsaturated, substituted groups in excellent yields.

3.
Angew Chem Int Ed Engl ; 61(24): e202203158, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35344246

RESUMO

Surface-plasmon-mediated phenylacetylide intermediate transfer from the Cu to the Pd surface affords a novel mechanism for transmetalation, enabling wavelength-tunable cross-coupling and homo-coupling reaction pathway control. C-C bond forming Sonogashira coupling and Glaser coupling reactions in O2 atmosphere are efficiently driven by visible light over heterogeneous Cu and Pd nanoparticles as a mixed catalyst without base or other additives. The reaction pathway can be controlled by switching the excitation wavelength. Shorter wavelengths (400-500 nm) give the Glaser homo-coupling diyne, whereas longer wavelength irradiation (500-940 nm) significantly increases the degree of cross-coupling Sonogashira coupling products. The ratio of the activated intermediates of alkyne to the iodobenzene is wavelength dependent and this regulates transmetalation. This wavelength-tunable reaction pathway is a novel way to optimize the product selectivity in important organic syntheses.

4.
J Colloid Interface Sci ; 606(Pt 1): 588-599, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34411830

RESUMO

Selective oxidation of alcohols is an essential reaction for fine chemical production. Here, the photocatalytic oxidation of benzyl alcohol by zinc oxide (ZnO) nanocrystals was investigated to clarify the mechanism of selective oxidation with this process. Reactivity when in contact with three distinct ZnO nanocrystal shapes: nanocones, nanorods and nanoplates, was studied in order to compare crystal facet-specific effects in the reaction system. The same non-hydrothermal and non-hydrolytic aminolysis method was used to synthesise all three nanocrystal shapes. The ZnO catalysts were characterized using by a range of techniques to establish the key properties of the prominent ZnO crystal facets exposed to the reaction medium. The ZnO nanocrystals photocatalysed the benzyl alcohol oxidation reaction when irradiated by a 370 - 375 nm LED output and each ZnO crystal morphology exhibited different reaction kinetics for the oxidation reaction. ZnO nanocones displayed the highest benzyl alcohol conversion rate while nanorods gave the lowest. This established a facet-dependent kinetic activity for the benzyl alcohol reaction of (101¯1) > (0001) > (101¯0). Experimental and density functional theory computation results confirm that the {101¯1} facet is a surface that exposes undercoordinated O atoms to the reaction medium, which explains why the reactant benzyl alcohol adsorption on this facet is the highest. Light irradiation can excite valence band electrons to the conduction band, which are then captured by O2 molecules to yield superoxide (O2•-). In a non-aqueous solvent, the photogenerated holes oxidise benzyl alcohol to form a radical species, which reacts with O2•- to yield benzaldehyde. This results in 100% product selectivity for benzaldehyde, rather than the carboxylic acid derivative.


Assuntos
Nanoestruturas , Nanotubos , Óxido de Zinco , Catálise , Oxirredução
5.
J Colloid Interface Sci ; 608(Pt 3): 2358-2366, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34750008

RESUMO

High-risk arsenic contamination found in aqueous system is reported across the world and causing severe environmental issues. In this study, the Mg-Al Layered Double Hydroxide (LDH) modified by sulphur species (LDH-S) was found exhibiting high effectivity and selectivity in As(V) removal owing to the strong interaction between embedded HS- and AsO43-. The LDH-S with Mg to Al ratio 2-1 give the best performance with As(V) adsorption capacity 40.8 mg/g, which is 715% higher than that of pristine LDH (2-1). The adsorbent exhibits a high tolerance to concentrated competitive anions. In the continuous flow test, the adsorbent can reduce the As(V) concentration from 20 ppm to below-ppb-level indicating the potential in industry application. The adsorption mechanism is experimentally investigated and examined by Density Function Theory (DFT) calculation. The result illustrates that, differ from the traditional ion exchange mechanism of LDH, the enhanced removal capacity and selectivity of LDH-S for As(V) is attributed to the strong affinity between H atom from HS- ion (in the interlayer region of LDH) and the O atom from AsO43-.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Hidróxidos , Enxofre
6.
Nanoscale ; 13(15): 7096-7107, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889916

RESUMO

Catalysts, which can accelerate chemical reactions, show promising potential to alleviate environmental pollution and the energy crisis. However, their wide application is severely limited by their low efficiency and poor selectivity due to the recombination of photogenerated electron-hole pairs, the back-reaction of interactants. Accordingly, ferroelectrics have emerged as promising catalysts to address these issues with the advantages of promoted light adsorption, boosted catalytic efficiency as a result of their intrinsic polarization, suppressed electron-hole pair recombination, and superior selectivity via the ferroelectric switch. This review summarizes the recent research progress of catalytic studies based on ferroelectric materials and highlights the controllability of catalytic activity by the ferroelectric switch. More importantly, we also comprehensively highlight the underlying working mechanism of ferroelectric-controlled catalysis to facilitate a deep understanding of this novel chemical reaction and guide future experiments. Finally, the perspectives of catalysis based on ferroelectrics and possible research opportunities are discussed. This review is expected to inspire wide research interests and push ferroelectric catalysis to practical applications.

7.
ACS Omega ; 6(7): 4740-4748, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644581

RESUMO

Gold nanoparticles (Au NPs) supported on a nanostructured gamma alumina (γ-Al2O3) fiber can exhibit excellent catalytic activity for the conversion of 5-hydroxymethylfurfural to produce its ester derivative, dimethyl 2,5-furandicarboxylate (FDMC). γ-Al2O3 was synthesized using a PEG surfactant to generate oxide fibers that randomly stack together into irregular shapes. The average particle sizes of the Au NPs are 1-6 nm, where the catalytically active Au (111) surface is the exposed facet. This 3D nanocatalyst architecture enhances the 5-hydroxymethylfurfural (HMF) oxidative esterification because HMF reactant molecules can readily diffuse into this fibrous structure and adsorb to active catalytic sites, while ester product molecules can diffuse out. Up to 99% HMF conversion and 90% FDMC selectivity can be obtained at a low reaction temperature of 45 °C, and the catalyst shows excellent recyclability. Increasing the Au content in the catalyst minimizes the requirement of a base for HMF conversion. Thus, the Au NPs supported on γ-Al2O3 can drive HMF esterification to FDMC efficiently with high product selectivity under very mild reaction conditions, omitting the need for an additional esterification step of the HMF acid.

8.
Chem Commun (Camb) ; 56(79): 11847-11850, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33021248

RESUMO

We report a platinum nanocluster/graphitic carbon nitride (Pt/g-C3N4) composite solid catalyst with a photocatalytic anaerobic oxidation function for highly active and selective transformation of alcohols to ketones. The desirable products were successfully obtained in good to excellent yields from various functionalized alcohols at room temperature, including unactivated alcohols. Mechanistic studies indicated that the reaction could proceed through a Pt-mediated hole oxidation initiating an α-alcohol radical intermediate followed by a two-electron oxidation pathway. The merit of this strategy offers a general approach towards green and sustainable organic synthetic chemistry.

9.
J Hazard Mater ; 394: 122529, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32200244

RESUMO

Two-dimensional (2D) nanosheet-based nanocomposites have attracted intensive interest owing to the unique electronic and optical properties from their constituent phases and the synergistic effect from the heterojunctions. In this study, an interfacial coupled TiO2/g-C3N4 2D-2D heterostructure has been prepared via in situ growth of ultrathin 2D-TiO2 on dispersed g-C3N4 nanosheets. This strongly coupled 2D-2D TiO2/g-C3N4, different from the weakly bonded 2D-TiO2/g-C3N4 heterostructures produced by mechanical mixing, has unique electronic structures and chemical states due to strong interlayer charge transfer, confirmed by both experimental and theoretical analyses. Significantly enhanced visible-light responses have been observed, indicating a great potential for visible-light induced photosynthesis and photocatalysis. For benzylamine coupling reactions under visible-light irradiation, 80 % yield rate has been achieved, superior to ∼30 % yield rate when adopting either 2D-TiO2 or g-C3N4 structure. The enhanced photocatalytic activity can be attributed to the adequate separation of photo-generated electrons at the strongly coupled 2D-2D heterojunction interfaces.

10.
J Hazard Mater ; 382: 121111, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31563089

RESUMO

Hydrotalcite materials are generally utilized for anionic pollutants due to its interlayered anion exchange ability. Their potentiality for cationic contaminants is rarely explored. In this study, disulfide (S2-) intercalated LDH material demonstrated capability to remove both heavy metal cations and oxyanions simultaneously from water. The S2- intercalation of LDH significantly improved its adsorption capability towards both heavy metal cations (Co2+ and Ni2+) and oxyanion (CrO42-). The adsorption amount of S-LDH towards Co2+ and Ni2+ reached 88.6mg/g and 76.2mg/g, which are 405% and 281% higher than that of pristine LDH. For CrO42- removal, the adsorption amount reached 34.7mg/g, 402% higher than that of pristine LDH. The cations capture mechanism mainly depends on the novel layer sheet cation substitution mechanism based on irreversible precipitation and the generation of metal sulfide precipitates. Meanwhile, the interlayered S2- can be easily replaced by CrO42- to realize the simultaneous removal of both heavy metal cations and oxyanions. In the fixed-bed column experiments, 448 bed volume (BV) (672 mL) of simulating electroplating wastewater can be efficiently treated by yielding only 1 BV(15 mL) of chemical sludge, which is practically acceptable. This work provided a highly practical adsorption technology based on the S2- modification hydrotalcite material for the purification of heavy metal ions contaminated wastewater.

11.
Chemosphere ; 234: 488-495, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31229709

RESUMO

Heavy metals present in industrial wastewater contribute to human and ecosystem health risk when discharged without proper treatment. Low-cost biosorbents with high metal-binding capacity are increasingly being utilized for the removal of heavy metals. Inherent physico-chemical properties of biosorbents significantly influence their adsorption capacity. Studies quantifying the influence exerted by these properties on adsorption capacity are scarce. This study quantifies the influence and relative importance of selected physico-chemical properties on the adsorption capacity of three divalent heavy metals; Cu2+, Cd2+ and Pb2+ using multivariate analysis. Twenty one biosorbent mixtures were created, systematically varying their physico-chemical properties using tea factory waste and coconut shell biochar. Their adsorption capacities were measured using batch sorption studies. The influence of physico-chemical properties on the adsorption capacity is comparable for all three metal cations. Regression models were developed to quantify the influence of physico-chemical parameters on the adsorption capacity based on regression coefficients. All models were found to have high reliability with R2 values above 0.98. Acidic surface functional groups were found to act as the key property that governs the adsorption capacity of Pb2+, Cu2+ and Cd2+. Carboxylic groups played a major role in the adsorption of Cu2+ and Pb2+, while lactonic groups were more important in providing binding sites to Cd2+. SSA failed to demonstrate a significant impact on the adsorption capacity of these three metals on its own when the biosorbent had a low surface functional group density.


Assuntos
Carvão Vegetal/química , Metais Pesados/isolamento & purificação , Purificação da Água/métodos , Adsorção , Cocos , Metais Pesados/análise , Metais Pesados/química , Propriedades de Superfície , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/normas
12.
Angew Chem Int Ed Engl ; 58(35): 12032-12036, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31095843

RESUMO

Product selectivity of alkyne hydroamination over catalytic Au2 Co alloy nanoparticles (NPs) can be made switchable by a light-on/light-off process, yielding imine (cross-coupling product of aniline and alkyne) under visible-light irradiation, but 1,4-diphenylbutadiyne in the dark. The low-flux light irradiation concentrates aniline on the catalyst, accelerating the catalytic cross-coupling by several orders of magnitude even at a very low overall aniline concentrations (1.0×10-3  mol L-1 ). A tentative mechanism is that Au2 Co NPs absorb light, generating an intense fringing electromagnetic field and hot electrons. The sharp field-gradient (plasmonic optical force) can selectively enhance adsorption of light-polarizable aniline molecules on the catalyst. The light irradiation thereby alters the aniline/alkyne ratio at the NPs surface, switching product selectivity. This represents a new paradigm to modify a catalysis process by light.

13.
Dalton Trans ; 46(32): 10665-10672, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28463372

RESUMO

Silver-palladium (Ag-Pd) alloy nanoparticles strongly absorb visible light and exhibit significantly higher photocatalytic activity compared to both pure palladium (Pd) and silver (Ag) nanoparticles. Photocatalysts of Ag-Pd alloy nanoparticles on ZrO2 and Al2O3 supports are developed to catalyze the nitroaromatic coupling to the corresponding azo compounds under visible light irradiation. Ag-Pd alloy NP/ZrO2 exhibited the highest photocatalytic activity for nitrobenzene coupling to azobenzene (yield of ∼80% in 3 hours). The photocatalytic efficiency could be optimized by altering the Ag : Pd ratio of the alloy nanoparticles, irradiation light intensity, temperature and wavelength. The rate of the reaction depends on the population and energy of the excited electrons, which can be improved by increasing the light intensity or by using a shorter wavelength. The knowledge developed in this study may inspire further studies on Ag alloy photocatalysts and organic syntheses using Ag-Pd nanoparticle catalysts driven under visible light Irradiation.

14.
J Phys Chem Lett ; 8(11): 2526-2534, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28524660

RESUMO

By investigating the action spectra (the relationship between the irradiation wavelength and apparent quantum efficiency of reactions under constant irradiance) of a number of reactions catalyzed by nanoparticles including plasmonic metals, nonplasmonic metals, and their alloys at near-ambient temperatures, we found that a photon energy threshold exists in each photocatalytic reaction; only photons with sufficient energy (e.g., higher than the energy level of the lowest unoccupied molecular orbitals) can initiate the reactions. This energy alignment (and the photon energy threshold) is determined by various factors, including the wavelength and intensity of irradiation, molecule structure, reaction temperature, and so forth. Hence, distinct action spectra were observed in the same type of reaction catalyzed by the same catalyst due to a different substituent group, a slightly changed reaction temperature. These results indicate that photon-electron excitations, instead of the photothermal effect, play a dominant role in direct photocatalysis of metal nanoparticles for many reactions.

15.
Chem Commun (Camb) ; 52(77): 11567-70, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27606378

RESUMO

Nanoparticles (NPs) of Pd and Pt were used for the selective oxidation of aliphatic alcohols with molecular oxygen as an oxidant at near ambient temperatures under visible light irradiation. Distinct final products were obtained under identical reaction conditions, aliphatic esters formed over the Pd NPs while aldehydes formed over the Pt NPs. The reason for this different product selectivity is proven to be due to the much stronger interaction of Pd NPs with alcohol and aldehyde compared to Pt NPs. The photocatalytic activity is tuneable by light intensity or a moderate change in the reaction temperature.

16.
ACS Appl Mater Interfaces ; 8(25): 16503-10, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27281583

RESUMO

Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

17.
J Am Chem Soc ; 137(5): 1956-66, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25607508

RESUMO

Selective oxidation of aliphatic alcohols under mild and base-free conditions is a challenging process for organic synthesis. Herein, we report a one-pot process for the direct oxidative esterification of aliphatic alcohols that is significantly enhanced by visible-light irradiation at ambient temperatures. The new methodology uses heterogenerous photocatalysts of gold-palladium alloy nanoparticles on a phosphate-modified hydrotalcite support and molecular oxygen as a benign oxidant. The alloy photocatalysts can absorb incident light, and the light-excited metal electrons on the surface of metal nanoparticles can activate the adsorbed reactant molecules. Tuning the light intensity and wavelength of the irradiation can remarkably change the reaction activity. Shorter wavelength light (<550 nm) drives the reaction more efficiently than light of longer wavelength (e.g., 620 nm), especially at low temperatures. The phosphate-exchanged hydrotalcite support provides sufficient basicity (and buffer) for the catalytic reactions; thus, the addition of base is not required. The photocatalysts are efficient and readily recyclable. The findings reveal the first example of using "green" oxidants and light energy to drive direct oxidative esterification of aliphatic alcohols under base-free, mild conditions.

18.
Angew Chem Int Ed Engl ; 53(11): 2935-40, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24604813

RESUMO

Supported nanoparticles (NPs) of nonplasmonic transition metals (Pd, Pt, Rh, and Ir) are widely used as thermally activated catalysts for the synthesis of important organic compounds, but little is known about their photocatalytic capabilities. We discovered that irradiation with light can significantly enhance the intrinsic catalytic performance of these metal NPs at ambient temperatures for several types of reactions. These metal NPs strongly absorb the light mainly through interband electronic transitions. The excited electrons interact with the reactant molecules on the particles to accelerate these reactions. The rate of the catalyzed reaction depends on the concentration and energy of the excited electrons, which can be increased by increasing the light intensity or by reducing the irradiation wavelength. The metal NPs can also effectively couple thermal and light energy sources to more efficiently drive chemical transformations.

19.
Nanoscale ; 5(22): 11011-8, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24068160

RESUMO

Iodine radioisotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials. The (129)I(-) anion is one of the more mobile radioactive species due to a long half-life, and it is a great challenge to design long-term management solutions for such radioactive waste. In this study, a new adsorbent structure with the potential to efficiently remove radioactive iodine anions (I(-)) from water is devised: silver oxide (Ag2O) nanocrystals firmly anchored on the surface of titanate nanotubes and nanofibers via coherent interfaces between Ag2O and titanate phases. I(-) anions in fluids can easily access the Ag2O nanocrystals and be efficiently trapped by forming AgI precipitate that firmly attaches to the adsorbent. Due to their one-dimensional morphology, the new adsorbents can be readily dispersed in liquids and easily separated after purification; and the adsorption beds loaded with the adsorbents can permit high flux. This significantly enhances the adsorption efficiency and reduces the separation costs. The proposed structure reveals a new direction in developing efficient adsorbents for the removal of radioactive anions from wastewater.


Assuntos
Iodo/química , Nanofibras/química , Nanotubos/química , Óxidos/química , Compostos de Prata/química , Titânio/química , Adsorção , Ânions/química , Iodo/isolamento & purificação , Radioisótopos do Iodo/química , Nanofibras/ultraestrutura , Nanotubos/ultraestrutura , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
20.
J Am Chem Soc ; 135(15): 5793-801, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23566035

RESUMO

The intrinsic catalytic activity of palladium (Pd) is significantly enhanced in gold (Au)-Pd alloy nanoparticles (NPs) under visible light irradiation at ambient temperatures. The alloy NPs strongly absorb light and efficiently enhance the conversion of several reactions, including Suzuki-Miyaura cross coupling, oxidative addition of benzylamine, selective oxidation of aromatic alcohols to corresponding aldehydes and ketones, and phenol oxidation. The Au/Pd molar ratio of the alloy NPs has an important impact on performance of the catalysts since it determines both the electronic heterogeneity and the distribution of Pd sites at the NP surface, with these two factors playing key roles in the catalytic activity. Irradiating with light produces an even more profound enhancement in the catalytic performance of the NPs. For example, the best conversion rate achieved thermally at 30 °C for Suzuki-Miyaura cross coupling was 37% at a Au/Pd ratio of 1:1.86, while under light illumination the yield increased to 96% under the same conditions. The catalytic activity of the alloy NPs depends on the intensity and wavelength of incident light. Light absorption due to the Localized Surface Plasmon Resonance of gold nanocrystals plays an important role in enhancing catalyst performance. We believe that the conduction electrons of the NPs gain the light absorbed energy producing energetic electrons at the surface Pd sites, which enhances the sites' intrinsic catalytic ability. These findings provide useful guidelines for designing efficient catalysts composed of alloys of a plasmonic metal and a catalytically active transition metal for various organic syntheses driven by sunlight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA