Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS One ; 5(9): e12878, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20877565

RESUMO

BACKGROUND: The Innate immune system constitutes the first line of defense against pathogen infections. The Retinoic acid-inducible gene I (RIG-I) receptor recognizes triphosphorylated ssRNAs and dsRNA to initiate downstream signaling of interferon response. However, unregulated activity of these receptors could lead to autoimmune diseases. We seek to identify small molecules that can specifically regulate RIG-I signaling. METHODOLOGY/PRINCIPAL FINDINGS: Epigallocatechin gallate (EGCG), a polyphenolic catechin present in green tea, was identified in a small molecule screen. It was found to bind RIG-I and inhibits its signaling at low micromolar concentrations in HEK293T cells. Furthermore, EGCG dose-dependently inhibited the ATPase activity of recombinant RIG-I but did not compete with RIG-I interaction with RNA or with ATP. EGCG did not inhibit signaling by Toll-like receptors 3, 4, 9 or constitutive signaling by the adapter protein IPS-1. Structure activity relationship analysis showed that EGCG, its epimer GCG and a digallate-containing compound, theaflavin 3,3' digallate (TFDG) were potent RIG-I inhibitors. EGCG also inhibited IL6 secretion and IFN- ß mRNA synthesis in BEAS-2B cells, which harbors intact endogenous RIG-I signaling pathway. CONCLUSIONS/SIGNIFICANCE: EGCG and its derivatives could have potential therapeutic use as a modulator of RIG-I mediated immune responses.


Assuntos
Catequina/farmacologia , RNA Helicases DEAD-box/imunologia , Regulação para Baixo/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Extratos Vegetais/farmacologia , RNA de Cadeia Dupla/imunologia , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Camellia sinensis/química , Catequina/análogos & derivados , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células HEK293 , Humanos , RNA de Cadeia Dupla/genética , Receptores Imunológicos
2.
Antiviral Res ; 84(2): 142-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19699239

RESUMO

Selective delivery of antiretrovirals to human immunodeficiency virus (HIV) infected cells may reduce toxicities associated with long-term highly active antiretroviral therapy (HAART), may improve therapeutic compliance and delay the emergence of resistance. We developed sterically stabilized pegylated liposomes coated with targeting ligands derived from the Fab' fragment of HIV-gp120-directed monoclonal antibody F105, and evaluated these liposomes as vehicles for targeted delivery of a novel HIV-1 protease inhibitor. We demonstrated that the immunoliposomes were selectively taken up by HIV-1-infected cells and localized intracellularly, enabling the establishment of a cytoplasmic reservoir of protease inhibitor. In antiviral experiments, the drug delivered by the immunoliposomes showed greater and longer antiviral activity than comparable concentrations of free drug or drug encapsulated in non-targeted liposomes. In conclusion, by combining a targeting moiety with drug-loaded liposomes, efficient and specific uptake by non-phagocytic HIV-infected cells was facilitated, resulting in drug delivery to infected cells. This approach to targeted delivery of antiretroviral compounds may enable the design of drug regimens for patients that allow increased therapeutic adherence and less toxic treatment of HIV infection.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Lipossomos/metabolismo , Lipossomos/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Portadores de Fármacos/farmacologia , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/química , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Lipossomos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Linfócitos T/virologia
4.
Respir Res ; 10: 43, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19486528

RESUMO

BACKGROUND: The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR) 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. METHODS: TLR3 knock-out (KO) mice and C57B6 (WT) mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C). RESULTS: There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C)-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFalpha were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C), the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C)-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. CONCLUSION: These findings demonstrate that TLR3 activation by poly(I:C) modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.


Assuntos
Inflamação/induzido quimicamente , Poli I-C/farmacologia , Receptor 3 Toll-Like/fisiologia , Animais , Linhagem Celular , Citocinas/metabolismo , Feminino , Humanos , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pletismografia , Testes de Função Respiratória , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética
5.
Bioorg Med Chem Lett ; 19(15): 4350-3, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19515564

RESUMO

The synthesis and optimisation of HCV NS5B polymerase inhibitors with improved potency versus the existing compound 1 is described. Substitution in the benzothiadiazine portion of the molecule, furnishing improvement in potency in the high protein Replicon assay, is highlighted, culminating in the discovery of 12h, a highly potent oxyacetamide derivative.


Assuntos
Antivirais/síntese química , Benzotiadiazinas/química , Química Farmacêutica/métodos , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Animais , Antivirais/farmacologia , Benzotiadiazinas/farmacologia , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
6.
Am J Respir Crit Care Med ; 178(12): 1227-37, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18849495

RESUMO

RATIONALE: Acute respiratory distress syndrome (ARDS) manifests clinically as a consequence of septic and/or traumatic injury in the lung. Oxygen therapy remains a major therapeutic intervention in ARDS, but this can contribute further to lung damage. Patients with ARDS are highly susceptible to viral infection and it may be due to altered Toll-like receptor (TLR) expression. OBJECTIVES: To evaluate the role of TLR3 in ARDS. METHODS: TLR3 expression and signaling was determined in airway epithelial cells after in vitro hyperoxia challenge. Using a murine model of hyperoxia-induced lung injury, the role of TLR3 was determined using either TLR3-gene deficient mice or a specific neutralizing antibody directed to TLR3. MEASUREMENTS AND MAIN RESULTS: Increased TLR3 expression was observed in airway epithelial cells from patients with ARDS. Further, hyperoxic conditions alone were a major stimulus for increased TLR3 expression and activation in cultured human epithelial cells. Interestingly, TLR3(-/-) mice exhibited less acute lung injury, activation of apoptotic cascades, and extracellular matrix deposition after 5 days of 80% oxygen compared with wild-type (TLR3(+/+)) mice under the same conditions. Administration of a monoclonal anti-TLR3 antibody to TLR3(+/+) mice exposed to hyperoxic conditions likewise protected these mice from lung injury and inflammation. CONCLUSIONS: The potential for redundancy in function as well as cross-talk between distinct TLRs may indeed contribute to whether the inflammatory cascade can be effectively disrupted once signaling has been initiated. Together, these data show that TLR3 has a major role in the development of ARDS-like pathology in the absence of a viral pathogen.


Assuntos
Expressão Gênica , Hiperóxia/complicações , RNA/genética , Síndrome do Desconforto Respiratório/genética , Receptor 3 Toll-Like/genética , Animais , Apoptose , Biópsia , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Citometria de Fluxo , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Imuno-Histoquímica , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Receptor 3 Toll-Like/biossíntese
7.
J Biol Chem ; 283(21): 14629-35, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18347020

RESUMO

The Drosophila Toll receptor, which functions in both embryonic patterning and innate immunity to fungi and Gram-positive bacteria, is activated by a dimeric cytokine ligand, Spätzle (Spz). Previous studies have suggested that one Spz cross-links two Toll receptor molecules to form an activated complex. Here we report electron microscopy structures of the Toll ectodomain in the absence and presence of Spz. Contrary to expectations, Spz does not directly cross-link two Toll ectodomains. Instead, Spz binding at the N-terminal end of Toll predominantly induces the formation of a 2:2 complex, with two sites of interaction between the ectodomain chains, one located near to the N terminus of the solenoid and the other between the C-terminal juxtamembrane sequences. Moreover, Toll undergoes a ligand-induced conformational change, becoming more tightly curved than in the apo form. The unexpected 2:2 complex was confirmed by mass spectrometry under native conditions. These results suggest that activation of Toll is an allosteric mechanism induced by an end-on binding mode of its ligand Spz.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Receptores Toll-Like/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Dimerização , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/metabolismo , Ligantes , Ligação Proteica , Spodoptera
8.
Cell Immunol ; 248(2): 103-14, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18048020

RESUMO

Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-kappaB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.


Assuntos
Anticorpos Monoclonais , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/imunologia , Animais , Anticorpos Bloqueadores/metabolismo , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Linhagem Celular , Linhagem Celular Transformada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Projetos Piloto , Receptor 3 Toll-Like/metabolismo
9.
Virol J ; 4: 71, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17623075

RESUMO

To elucidate the relationship between resistance to HRSV neutralizing antibodies directed against the F protein and the fusion activity of the F protein, a recombinant approach was used to generate a panel of mutations in the major antigenic sites of the F protein. These mutant proteins were assayed for neutralizing mAb binding (ch101F, palivizumab, and MAb19), level of expression, post-translational processing, cell surface expression, and fusion activity. Functional analysis of the fusion activity of the panel of mutations revealed that the fusion activity of the F protein is tolerant to multiple changes in the site II and IV/V/VI region in contrast with the somewhat limited spectrum of changes in the F protein identified from the isolation of HRSV neutralizing antibody virus escape mutants. This finding suggests that aspects other than fusion activity may limit the spectrum of changes tolerated within the F protein that are selected for by neutralizing antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Anticorpos Monoclonais Humanizados , Epitopos , Humanos , Mutação , Testes de Neutralização , Palivizumab , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética
10.
J Immunol ; 178(12): 7833-9, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17548621

RESUMO

Bone marrow-derived immunomodulatory cytokines impart a critical function in the regulation of innate immune responses and hemopoiesis. However, the source of immunomodulatory cytokines in murine bone marrow and the cellular immune mechanisms that control local cytokine secretion remain poorly defined. Herein, we identified a population of resident murine bone marrow myeloid DEC205(+)CD11c(-)B220(-)Gr1(+)CD8alpha(-)CD11b(+) cells that respond to TLR2, TLR4, TLR7, TLR8, and TLR9 agonists as measured by the secretion of proinflammatory and anti-inflammatory cytokines in vitro. Phenotypic and functional analyses revealed that DEC205(+)CD11b(+)Gr-1(+) bone marrow cells consist of heterogeneous populations of myeloid cells that can be divided into two main cell subsets based on chemokine and TLR gene expression profile. The DEC205(+)CD11b(+)Gr-1(low) cell subset expresses high levels of TLR7 and TLR9 and was the predominant source of IL-6, TNF-alpha, and IL-12 p70 production following stimulation with the TLR7 and TLR9 agonists CpG and R848, respectively. In contrast, the DEC205(+)CD11b(+)Gr-1(high) cell subset did not respond to CpG and R848 stimulation, which correlated with their lack of TLR7 and TLR9 expression. Similarly, a differential chemokine receptor expression profile was observed with higher expression of CCR1 and CXCR2 found in the DEC205(+)CD11(+)Gr-1(high) cell subset. Thus, we identified a previously uncharacterized population of resident bone marrow cells that may be implicated in the regulation of local immune responses in the bone marrow.


Assuntos
Antígenos CD/análise , Células da Medula Óssea/imunologia , Quimiocinas/genética , Lectinas Tipo C/análise , Células Mieloides/imunologia , Receptores de Superfície Celular/análise , Receptores de Quimiocinas/análise , Receptores Toll-Like/genética , Animais , Células da Medula Óssea/efeitos dos fármacos , Citocinas/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Antígenos de Histocompatibilidade Menor , Células Mieloides/efeitos dos fármacos , Receptores Toll-Like/agonistas
11.
J Biol Chem ; 282(24): 17696-705, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17434873

RESUMO

Recognition of double-stranded RNA by Toll-like receptor 3 (TLR3) will increase the production of cytokines and chemokines through transcriptional activation by the NF-kappaB protein. Over 136 single-nucleotide polymorphisms (SNPs) in TLR3 have been identified in the human population. Of these, four alter the sequence of the TLR3 protein. Molecular modeling suggests that two of the SNPs, N284I and L412F, could affect the packing of the leucine-rich repeating units in TLR3. Notably, L412F is reported to be present in 20% of the population and is higher in the asthmatic population. To examine whether the four SNPs affect TLR3 function, each were cloned and tested for their ability to activate the expression of TLR3-dependent reporter constructs. SNP N284I was nearly completely defective for activating reporter activity, and L412F was reduced in activity. These two SNPs did not obviously affect the level of TLR3 expression or their intracellular location in vesicles. However, N284I and L412F were underrepresented on the cell surface, as determined by flow cytometry analysis, and were not efficiently secreted into the culture medium when expressed as the soluble ectodomain. They were also reduced in their ability to act in a dominant negative fashion on the wild type TLR3 allele. These observations suggest that N284I and L412F affect the activities of TLR3 needed for proper signaling.


Assuntos
Alelos , Polimorfismo de Nucleotídeo Único , Receptor 3 Toll-Like , Sequência de Aminoácidos , Animais , Asma/metabolismo , Linhagem Celular , Evolução Molecular , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
13.
J Biol Chem ; 282(10): 7668-78, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17209042

RESUMO

The structure of the human Toll-like receptor 3 (TLR3) ectodomain (ECD) was recently solved by x-ray crystallography, leading to a number of models concerning TLR3 function (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585; Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980) The structure revealed four pairs of cysteines that are putatively involved in disulfide bond formation, several residues that are predicted to be involved in dimerization between ECD subunits, and surfaces that could bind to poly(I:C). In addition, there are two loops that protrude from the central solenoid structure of the protein. We examined the recombinant TLR3 ECD for disulfide bond formation, poly(I:C) binding, and protein-protein interaction. We also made over 80 mutations in the residues that could affect these features in the full-length TLR3 and examined their effects in TLR3-mediated NF-kappaB activation. A number of mutations that affected TLR3 activity also affected the ability to act as dominant negative inhibitors of wild type TLR3. Loss of putative RNA binding did not necessarily affect dominant negative activity. All of the results support a model where a dimer of TLR3 is the form that binds RNA and activates signal transduction.


Assuntos
Receptor 3 Toll-Like/química , Sequência de Aminoácidos , Dimerização , Dissulfetos/química , Humanos , Dados de Sequência Molecular , NF-kappa B/metabolismo , Poli I-C/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Receptor 3 Toll-Like/fisiologia
14.
J Virol Methods ; 139(1): 17-23, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17034868

RESUMO

The use of targeting moieties is a new and exciting field of scientific research for facilitating the specific delivery of therapeutic agents in HIV-infected patients. The interaction of a potential targeting moiety with its ligand is a crucial factor in the evaluation of a targeted approach for chemotherapeutic intervention. Therefore, we have further characterized the interaction between a potential targeting agent, the monoclonal human antibody F105, and its ligand gp120, a glycoprotein expressed on the surface of HIV-1 infected cells. We demonstrate the specificity of binding and entry of F105 to infected cells. F105 was rapidly taken up into the cell and accumulated in the Golgi apparatus. Kinetic analysis of the F105-gp120 interaction revealed an equilibrium dissociation constant (K(D)) of 0.62 nM, compared with the gp120-CD4 interaction where the K(D) was determined at 35 nM. Consequently, F105 displayed a higher gp120 affinity. This was due to a slower dissociation as compared with the natural ligand. These data further underline the potential of monoclonal antibodies as targeting agents, and offer new insights into the possibility of F105 as a targeting moiety for the delivery of antiretroviral drugs to HIV-1 infected cells.


Assuntos
Síndrome da Imunodeficiência Adquirida/terapia , Anticorpos Monoclonais/metabolismo , Proteína gp120 do Envelope de HIV/imunologia , HIV-1 , Imunoglobulina G/metabolismo , Cadeias kappa de Imunoglobulina/metabolismo , Anticorpos Monoclonais/uso terapêutico , Humanos
15.
J Clin Virol ; 38(2): 139-45, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17169605

RESUMO

OBJECTIVES: To identify factors that contribute to variability of HSV antiviral susceptibility breakpoints. METHODS: Acyclovir and penciclovir IC(50)'s for 12 HSV clinical isolates were measured in two laboratories using plaque reduction assay (PRA), an enzyme immunoassay (EIA)-based antigen reduction, and DNA hybridization on Vero, A549, MRC-5, HEL299 and HELG monolayers. Pair-wise comparisons were performed to evaluate variables including testing laboratory, technique, monolayer, and antiviral. The proportion of false results was analyzed using a conventional susceptibility IC(50) breakpoint of 2 microg/ml. RESULTS: Acyclovir-resistant HSV isolates were correctly identified by all methods. In contrast, there were 6-67% of susceptible isolates incorrectly characterized as drug-resistant. Variables associated with these errors included testing site, assay method, cell line and antiviral. A549, DNA hybridization, and penciclovir were associated with the highest IC(50)'s, whereas the PRA, EIA, and human fibroblast-monolayers provided the best differentiation between susceptible and resistant HSV isolates. CONCLUSIONS: The current recommendations to use a single discriminating value to define HSV resistance to nucleoside analogues can be problematic. False results are influenced in various degrees by the laboratory method, tissue culture and antivirals.


Assuntos
Aciclovir/análogos & derivados , Aciclovir/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Aciclovir/metabolismo , Animais , Técnicas de Cultura de Células , Chlorocebus aethiops , Farmacorresistência Viral , Fibroblastos , Guanina , Herpesvirus Humano 1/isolamento & purificação , Herpesvirus Humano 2/isolamento & purificação , Humanos , Técnicas Imunoenzimáticas/métodos , Concentração Inibidora 50 , Hibridização de Ácido Nucleico , Células Vero , Ensaio de Placa Viral/métodos
16.
J Interferon Cytokine Res ; 26(8): 511-20, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16881862

RESUMO

Over the past two decades, our understanding of interleukin-16 (IL-16) has increased substantially. Initial studies characterizing IL-16 as a chemotactic cytokine (but not a chemokine) just scratched the surface of the unique properties of this cytokine. Since then, scientists have determined that IL-16 has a wide range of effects on cells, including upregulation of CD25, induction of cells to progress to the G(1) phase, inhibition of antigen- specific proliferation yet with retained antigen nonspecific proliferative properties, and discovery of a novel neuronal form with unique properties. Recently, a plethora of studies have implicated IL-16 in exacerbation of infectious, immune-mediated, and autoimmune inflammatory disorders, including atopic dermatitis, irritable bowel syndrome, systemic lupus erythematosus, neurodegenerative disorders, and viral infections. Herein, we review the body of evidence supporting a role for IL-16 in infectious and immune-mediated inflammatory disorders and explore the known and possible mechanism of actions in the numerous diseases.


Assuntos
Infecções/imunologia , Inflamação/imunologia , Interleucina-16/fisiologia , Animais , Doenças Autoimunes/imunologia , Dermatite/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Interleucina-16/química , Camundongos , Esclerose Múltipla/imunologia , Transtornos Respiratórios
17.
Virol J ; 3: 34, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-16723026

RESUMO

The mature F protein of all known isolates of human respiratory syncytial virus (HRSV) contains fifteen absolutely conserved cysteine (C) residues that are highly conserved among the F proteins of other pneumoviruses as well as the paramyxoviruses. To explore the contribution of the cysteines in the extracellular domain to the fusion activity of HRSV F protein, each cysteine was changed to serine. Mutation of cysteines 37, 313, 322, 333, 343, 358, 367, 393, 416, and 439 abolished or greatly reduced cell surface expression suggesting these residues are critical for proper protein folding and transport to the cell surface. As expected, the fusion activity of these mutations was greatly reduced or abolished. Mutation of cysteine residues 212, 382, and 422 had little to no effect upon cell surface expression or fusion activity at 32 degrees C, 37 degrees C, or 39.5 degrees C. Mutation of C37 and C69 in the F2 subunit either abolished or reduced cell surface expression by 75% respectively. None of the mutations displayed a temperature sensitive phenotype.


Assuntos
Fusão Celular , Cisteína/química , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais de Fusão/química , Sequência de Aminoácidos , Linhagem Celular , Cisteína/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Vírus Sincicial Respiratório Humano/patogenicidade , Alinhamento de Sequência , Serina/genética , Relação Estrutura-Atividade , Transfecção , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
18.
Physiol Genomics ; 26(2): 125-33, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16554548

RESUMO

To gain global pathway perspective of ex vivo viral infection models using human peripheral blood mononuclear cells (PBMCs), we conducted expression analysis on PBMCs of healthy donors. RNA samples were collected at 3 and 24 h after PBMCs were challenged with the Toll-like receptor-3 (TLR3) agonist polyinosinic acid-polycytidylic acid [poly(I:C)] and analyzed by internally developed cDNA microarrays and TaqMan PCR. Our results demonstrate that poly(I:C) challenge can elicit certain gene expression changes, similar to acute viral infection. Hierarchical clustering revealed distinct immediate early, early-to-late, and late gene regulation patterns. The early responses were innate immune responses that involve TLR3, the NF-kappaB-dependent pathway, and the IFN-stimulated pathway, whereas the late responses were mostly cell-mediated immune response that involve activation of cell adhesion, cell mobility, and phagocytosis. Overall, our results expanded the utilities of this ex vivo model, which could be used to screen molecules that can modulate viral stress-induced inflammation, in particular those mediated via TLRs.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Indutores de Interferon/farmacologia , Leucócitos Mononucleares/metabolismo , Poli I-C/farmacologia , Análise por Conglomerados , Humanos , Inflamação , Interferons/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose , Receptor 3 Toll-Like/metabolismo
19.
J Biol Chem ; 281(16): 11144-51, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16533755

RESUMO

Toll-like receptors (TLRs) play critical roles in bridging the innate and adaptive immune responses. The human TLR3 recognizes foreign-derived double-stranded RNA and endogenous necrotic cell RNA as ligands. Herein we characterized the contribution of glycosylation to TLR3 structure and function. Exogenous addition of purified extracellular domain of TLR3 (hTLR3 ECD) expressed in human embryonic kidney cells was found to inhibit TLR3-dependent signaling, thus providing a reagent for structural and functional characterization. Approximately 35% of the mass of the hTLR3 ECD was due to posttranslational modification, with N-linked glycosyl groups contributing substantially to the additional mass. Cells treated with tunicamycin, an inhibitor of glycosylation, prevented TLR3-induced NF-kappaB activation, confirming that N-linked glycosylation is required for bioactivity of this receptor. Further, mutations in two of these predicted glycosylation sites impaired TLR3 signaling without obviously affecting the expression of the protein. Single-particle structures reconstructed from electron microscopy images and two-dimensional crystallization revealed that hTLR3 ECD forms a horseshoe structure similar to the recently elucidated x-ray structure of the protein expressed in insect cells using baculovirus vectors (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585 and Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980). There are, however, notable differences between the human cell-derived and insect cell-derived structures, including features attributable to glycosylation.


Assuntos
Receptor 3 Toll-Like/fisiologia , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Separação Celular , Cristalografia por Raios X , Análise Mutacional de DNA , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Vetores Genéticos , Glicosilação , Humanos , Processamento de Imagem Assistida por Computador , Ligantes , Espectrometria de Massas , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , NF-kappa B/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , Proteínas Recombinantes/química , Transdução de Sinais , Relação Estrutura-Atividade , Receptor 3 Toll-Like/metabolismo , Tunicamicina/farmacologia
20.
J Med Chem ; 49(3): 971-83, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16451063

RESUMO

Recently, we disclosed a new class of HCV polymerase inhibitors discovered through high-throughput screening (HTS) of the GlaxoSmithKline proprietary compound collection. This interesting class of 3-(1,1-dioxo-2H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones potently inhibits HCV polymerase enzymatic activity and inhibits the ability of the subgenomic HCV replicon to replicate in Huh-7 cells. This report will focus on the structure-activity relationships (SAR) of substituents on the quinolinone ring, culminating in the discovery of 1-(2-cyclopropylethyl)-3-(1,1-dioxo-2H-1,2,4-benzothiadiazin-3-yl)-6-fluoro-4-hydroxy-2(1H)-quinolinone (130), an inhibitor with excellent potency in biochemical and cellular assays possessing attractive molecular properties for advancement as a clinical candidate. The potential for development and safety assessment profile of compound 130 will also be discussed.


Assuntos
Antivirais/síntese química , Benzotiadiazinas/síntese química , Hepacivirus/enzimologia , Quinolonas/síntese química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Tiadiazinas/síntese química , Animais , Antivirais/química , Antivirais/farmacologia , Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Disponibilidade Biológica , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Cristalografia por Raios X , Cães , Genótipo , Meia-Vida , Hepacivirus/genética , Macaca fascicularis , Modelos Moleculares , Estrutura Molecular , Mutação , Ligação Proteica , Quinolonas/química , Quinolonas/farmacologia , RNA Polimerase Dependente de RNA/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiadiazinas/química , Tiadiazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA