Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
ACS Infect Dis ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787939

RESUMO

Multidrug-resistant Acinetobacter baumannii is a serious threat pathogen rapidly spreading in clinics and causing a range of complicated human infections. The major contributor to A. baumannii antibiotic resistance is the overproduction of AdeIJK and AdeABC multidrug efflux pumps of the resistance-nodulation-division (RND) superfamily of proteins. The dominant role of efflux in antibiotic resistance and the relatively high permeability of the A. baumannii outer membrane to amphiphilic compounds make this pathogen a promising target for the discovery of clinically relevant efflux pump inhibitors. In this study, we identified 4,6-diaminoquoniline analogs with inhibitory activities against A. baumannii AdeIJK efflux pump and followed up on these compounds with a focused synthetic program to improve the target specificity and to reduce cytotoxicity. We identified several candidates that potentiate antibacterial activities of antibiotics erythromycin, tetracycline, and novobiocin not only in the laboratory antibiotic susceptible strain A. baumannii ATCC17978 but also in multidrug-resistant clinical isolates AB5075 and AYE. The best analogs potentiated the activities of antibiotics in low micromolar concentrations, did not have antibacterial activities on their own, inhibited AdeIJK-mediated efflux of its fluorescent substrate ethidium ion, and had low cytotoxicity in A549 human lung epithelial cells.

2.
J Bioenerg Biomembr ; 55(6): 435-446, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940722

RESUMO

Obesity, which is already pervasive throughout the world, endangers public health by raising the prevalence of metabolic disorders and making their treatment more difficult. The development of drugs to treat obesity is a focus of effort. Melanin concentrated hormone receptor 1 (MCHR1) is the target of some of these therapeutic possibilities since as increased levels of melanin concentrated hormone have been found in obesity models. Known MCHR1 antagonists include BMS-830216, GW-856464, NGD-4715, ALB-127158, and AMG 076, but many have failed phase-I clinical studies. As a potential treatment for cardiotoxicity, KRX-104130 has only recently been identified. As MCH system is potentially effective target for treatment of obesity, in silico research into interaction between MCHR1 and its antagonists at molecular level was the primary goal of this study. Analogues ALB-127158 and KRX-104130 were screened among the RealEnamine library. The complexes obtained by molecular docking were embedded in mimics brain-cell membrane and simulated for 540 ns, and then MM-GBSA were calculated with MMPBSA.py. With all these computational studies, similar or different aspects of selected analogous compounds to ALB-127158 and KRX-104130 were investigated. The specificity of this study was that it analyzed MCHR1 protein as embedded in membrane. It was concluded that KRX-104130's analogue Z1922310273 and ALB-127158's analogue PV-002757495233 did not cause a difference in terms of phospholipid membrane properties. In addition, all ligands remained stable in putative binding site. It has been suggested that PV-002757495233 and Z1922310273 compounds can be evaluated as MCHR1 antagonists when all these outputs are considered in melting pots.


Assuntos
Melaninas , Proteínas de Membrana , Humanos , Melaninas/metabolismo , Melaninas/uso terapêutico , Simulação de Acoplamento Molecular , Obesidade , Hormônios/uso terapêutico , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/uso terapêutico
3.
Res Microbiol ; 173(6-7): 103966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644510

RESUMO

The gram-negative strain Acinetobacter baumannii is a cocobacillus, non-motile and aerobic organism that is often found in nosocomial infections. Many institutions worldwide such as WHO are grappling with antibiotic resistance A. baumannii. Therefore, in recent years, there have been many studies in the literature about antibiotic resistance mechanisms. We studied the specificity of carbapenems for CarO, an outer membrane protein associated with imipenem-resistance that was strongly related to a decrease in CarO expression level or changes in protein structure. The specificity of five different carbapenems, imipenem, biapenem, ertapenem, faropenem, and meropenem, against the A. baumannii ATCC-17978 CarO protein, as well as the specificity of imipenem for five different types Type-1, Type-2, Type-3, Type-4, and ATCC-17978 CarO protein, were investigated using computational methods. In this study, homology modeling, molecular docking, membrane-protein complex building, and 800 ns long MD simulation methods were followed. The interactions of imipenem with the extracellular region of five different forms of CarO protein were investigated in this study, as well as five different antibiotic binding profiles to the model organism ATCC-17978 CarO protein. The mechanism of CarO influx has been revealed with this study at the molecular level and this data is intended to be used in future research, mutagenesis, and clinical trials.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Carbapenêmicos/metabolismo , Carbapenêmicos/farmacologia , Imipenem/metabolismo , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
4.
Comput Biol Chem ; 98: 107658, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278997

RESUMO

Bacteriodes fragilis is an anaerobic bacterium found in the human intestinal flora. In this study, BfEno was targeted with a structure-based drug design approach because inhibition of this enzyme may prevent both the aerobic and anaerobic pathways due to its role in the glycolytic pathway. First, the gene encoding BfEno was cloned, expressed and the protein produced over 95% purity. The Km and Vmax values of BfEno were determined as 314.9 µM and 256.2 µmol/min.mg, respectively. Drug-like chemicals were retrieved from the ZINC database for high-throughput virtual screening analyses. As a result of screening study, the ZINC91441604 has been proposed to bind to the active site of the enzyme and remain stable. The same compound exhibited weak binding to the human enolases than the bacterial enolase. Hence, ZINC91441604 may be proposed as a novel candidate for further in vitro and in vivo drug analysis towards the treatment of B. fragilis infections.


Assuntos
Infecções Bacterianas , Bacteroides fragilis , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Composição de Bases , Humanos , Fosfopiruvato Hidratase/química , Filogenia , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
5.
J Biomol Struct Dyn ; 40(2): 918-930, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32933378

RESUMO

In this study, the Nsp12-Nsp8 complex of SARS-CoV-2 was targeted with structure-based and computer-aided drug design approach because of its vital role in viral replication. Sequence analysis of RNA-dependent RNA polymerase (Nsp12) sequences from 30,366 different isolates were analysed for possible mutations. FDA-approved and investigational drugs were screened for interaction with both mutant and wild-type Nsp12-Nsp8 interfaces. Sequence analysis revealed that 70.42% of Nsp12 sequences showed conserved P323L mutation, located in the Nsp8 binding cleft. Compounds were screened for interface interaction, any with XP GScores lower than -7.0 kcal/mol were considered as possible interface inhibitors. RX-3117 (fluorocyclopentenyl cytosine) and Nebivolol had the highest binding affinities in both mutant and wild-type enzymes, therefore they were selected and resultant protein-ligand complexes were simulated for analysis of stability over 100 ns. Although the selected ligands had partial mobility in the binding cavity, they were not removed from the binding pocket after 100 ns. The ligand RX-3117 remained in the same position in the binding pocket of the mutant and wild-type enzyme after 100 ns MD simulation. However, the ligand Nebivolol folded and embedded in the binding pocket of mutant Nsp12 protein. Overall, FDA-approved and investigational drugs are able to bind to the Nsp12-Nsp8 interaction interface and prevent the formation of the Nsp12-Nsp8 complex. Interruption of viral replication by drugs proposed in this study should be further tested to pave the way for in vivo studies towards the treatment of COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Drogas em Investigação , Humanos , Proteínas não Estruturais Virais , Replicação Viral
6.
Turk J Chem ; 45(4): 1045-1056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707432

RESUMO

Antimicrobial resistance (AMR) threatens millions of people around the world and has been declared a global risk by the World Economic Forum. One of the important AMR mechanisms in Enterobacteriaceae is the production of extended-spectrum ß-lactamases. The most common ESBL, CTX-M ß-lactamases, is spread to the world by CTX-M-15 and CTX-M-14. Sulbactam, clavulanic acid, and tazobactam are first-generation ß-lactamase inhibitors and avibactam is a new non-ß-lactam ß-lactamase inhibitor. We studied that avibactam, sulbactam, clavulanic acid, tazobactam, and quercetin natural flavonoids were docked to target protein CTXM-15. Subsequently, the complexes were simulated using the molecular dynamics simulations method during 100 ns for determining the final binding positions of ligands. Clavulanic acid left CTX-M-15 and other ligands remained in the binding site after the simulation. The estimated binding energies were calculated during 100 ns simulation by the MMGBSA-MMPBSA method. The estimated free binding energies of avibactam, sulbactam, quercetin, tazobactam, and clavulanic acid were sorted as -33.61 kcal/mol, -16.04 kcal/mol, -14 kcal/mol, -12.68 kcal/mol, and -2.95 kcal/mol. As a result of both final binding positions and free binding energy calculations, Quercetin may be evaluated an alternative candidate and a more potent ß-lactamases inhibitor for new antimicrobial combinations to CTX-M-15. The results obtained in silico studies are predicted to be a preliminary study for in vitro studies for quercetin and similar bioactive natural compounds. These studies are notable for the discovery of natural compounds that can be used in the treatment of infections caused by ß-lactamase-producing pathogens.

7.
Bioorg Chem ; 110: 104796, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33799179

RESUMO

Tropical theileriosis is among the most common vector-borne diseases and caused by Theileria parasites. Theileria annulata is an obligate intracellular protozoan parasite and transmitted to especially Bos taurus and Bos indicus by Hyalomma tick vectors. C8 ([4-(3,4-dimethoxyphenyl)-6,7-dihydroxy-2H-chromen-2-one); C9 (4-(3,4-dihydroxyphenyl)-7,8 dihydroxy-2H-chromen-2-one); C21 (4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-2H-chromen-2 one) were identified as potent Theileria annulata enolase (TaEno) inhibitors in our previous studies. An ideal drug compound must inhibit the target parasite enzyme without inhibiting its homolog in the host. In this study, the inhibitory effect of the compounds previously evaluated on TaEno were tested on the host Bos taurus enolase (BtEno3) by in vitro studies. The interactions of enzyme-coumarin and enzyme-coumarin-substrate by in silico studies were also performed. All of the coumarin derivatives tested showed very low inhibitory effects on B. taurus enolase; 36,87% inhibition at 100 µM concentration for C8, 8,13% inhibition at 100 µM concentration for C9 and 77,69 µM of IC50 value for C21. In addition, these three coumarin derivatives and substrate 2PG were docked into the BtEno3 using molecular docking methods. Molecular interactions between enolase-coumarin and enolase-coumarin-substrate complexes were analyzed using molecular dynamics simulation methods for 100 ns. Estimated free energy of bindings of the substrate 2PG and coumarin derivatives to the BtEno3 were calculated by MM-GB(PB)SA methods. In comparison to the inhibition studies performed on TaEno, C8 and C9 coumarin derivatives remain the possible inhibitor candidates as they inhibit the host enolase at very high concentrations. These two promising compounds will be further analyzed by in vitro and in vivo studies towards developing an alternative drug against tropical theileriosis.


Assuntos
Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fosfopiruvato Hidratase/antagonistas & inibidores , Animais , Bovinos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Fosfopiruvato Hidratase/metabolismo , Relação Estrutura-Atividade
8.
Comput Biol Chem ; 89: 107398, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059132

RESUMO

Theileria annulata secretes peptidyl prolyl isomerase enzyme (TaPIN1) to manipulate the host cell oncogenic signaling pathway by disrupting the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) protein level leading to an increased level of c-Jun proto-oncogene. Buparvaquone is a hydroxynaphthoquinone anti-theilerial drug and has been used to treat theileriosis. However, TaPIN1 contains the A53 P mutation that causes drug resistance. In this study, potential TaPIN1 inhibitors were investigated using a library of naphthoquinone derivatives. Comparative models of mutant (m) and wild type (wt) TaPIN1 were predicted and energy minimization was followed by structure validation. A naphthoquinone (hydroxynaphthalene-1,2-dione, hydroxynaphthalene-1,4-dione) and hydroxynaphthalene-2,3-dione library was screened by Schrödinger Glide HTVS, SP and XP docking methodologies and the docked compounds were ranked by the Glide XP scoring function. The two highest ranked docked compounds Compound 1 (4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynaphthalene-1,2-dione) and Compound 2 (6-acetyl-1,4,5,7,8-pentahydroxynaphthalene-2,3-dione) were used for further molecular dynamics (MD) simulation studies. The MD results showed that ligand Compound 1 was located in the active site of both mTaPIN1 and wtTaPIN1 and could be proposed as a potential inhibitor by acting as a substrate antagonist. However, ligand Compound 2 was displaced away from the binding pocket of wtTaPIN1 but was located near the active site binding pocket of mTaPIN1 suggesting that could be selectively evaluated as a potential inhibitor against the mTaPIN1. Compound 1 and Compound 2 ligands are potential inhibitors but Compound 2 is suggested as a better inhibitor for mTaPIN1. These ligands could also further evaluated as potential inhibitors against human peptidyl prolyl isomerase which causes cancer in humans by using the same mechanism as TaPIN1.


Assuntos
Inibidores Enzimáticos/química , Naftoquinonas/química , Peptidilprolil Isomerase/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Theileria annulata/enzimologia , Domínio Catalítico , Bases de Dados de Compostos Químicos/estatística & dados numéricos , Inibidores Enzimáticos/metabolismo , Ensaios de Triagem em Larga Escala , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Naftoquinonas/metabolismo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Ligação Proteica , Proto-Oncogene Mas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
9.
Int J Biol Macromol ; 163: 1687-1696, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980406

RESUMO

SARS-CoV-2 has caused COVID-19 outbreak with nearly 2 M infected people and over 100K death worldwide, until middle of April 2020. There is no confirmed drug for the treatment of COVID-19 yet. As the disease spread fast and threaten human life, repositioning of FDA approved drugs may provide fast options for treatment. In this aspect, structure-based drug design could be applied as a powerful approach in distinguishing the viral drug target regions from the host. Evaluation of variations in SARS-CoV-2 genome may ease finding specific drug targets in the viral genome. In this study, 3458 SARS-CoV-2 genome sequences isolated from all around the world were analyzed. Incidence of C17747T and A17858G mutations were observed to be much higher than others and they were on Nsp13, a vital enzyme of SARS-CoV-2. Effect of these mutations was evaluated on protein-drug interactions using in silico methods. The most potent drugs were found to interact with the key and neighbor residues of the active site responsible from ATP hydrolysis. As result, cangrelor, fludarabine, folic acid and polydatin were determined to be the most potent drugs which have potency to inhibit both the wild type and mutant SARS-CoV-2 helicase. Clinical data supporting these findings would be important towards overcoming COVID-19.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Metiltransferases/antagonistas & inibidores , Pneumonia Viral/tratamento farmacológico , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Betacoronavirus/enzimologia , Betacoronavirus/genética , Sítios de Ligação , COVID-19 , Simulação por Computador , Infecções por Coronavirus/virologia , Aprovação de Drogas , Reposicionamento de Medicamentos , Ácido Fólico/farmacologia , Genoma Viral , Glucosídeos/farmacologia , Humanos , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Mutação , Pandemias , Pneumonia Viral/virologia , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , SARS-CoV-2 , Estilbenos/farmacologia , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
10.
Mol Divers ; 24(4): 1149-1164, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31754915

RESUMO

In this study, the inhibition potential of 3- and 4-arylcoumarin derivatives on Theileria annulata enolase (TaENO) was assessed for the first time in the literature. Firstly, protein stabilization analyses of TaENO were performed and it was found that the enzyme remains stable with the addition of 6 M ethylene glycol at + 4 °C. Inhibitor screening analyses were carried out using 25 coumarin derivatives on highly purified TaENO (> 95%), and four coumarin derivatives [4-(3,4-dimethoxyphenyl)-6,7-dihydroxy-2H-chromen-2-one (C8); 4-(3,4-dihydroxyphenyl)-7,8 dihydroxy-2H-chromen-2-one (C9); 4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-2H-chromen-2 one (C21); and 3-(3,4-dihydroxyphenyl)-7,8-dihydroxy-2H-chromen-2-one (C23)] showed the highest inhibitory effects with the IC50 values of 10.450, 13.170, 8.871 and 10.863 µM, respectively. The kinetic results indicated that these compounds inhibited the enzyme by uncompetitive inhibition. In addition, the successful binding of the most potent inhibitor (C21) into TaENO was confirmed by using MALDI-TOF mass spectrophotometry. Molecular docking analyses have predicted that C8 and C21 coumarin derivatives which showed high inhibitory effects on TaENO were interacted with high affinity to the potential regions out of the active site. Taken together, these coumarin derivatives (C8, C9, C21 and C23) are first known potent, nonsubstrate, uncompetitive inhibitors of TaENO and these results will facilitate further in vitro and in vivo analysis toward structure-based drug design studies.


Assuntos
Cumarínicos/química , Fosfopiruvato Hidratase/antagonistas & inibidores , Theileria annulata/efeitos dos fármacos , Domínio Catalítico , Desenho de Fármacos , Cinética , Simulação de Acoplamento Molecular/métodos , Relação Estrutura-Atividade
11.
Int J Biol Macromol ; 120(Pt B): 2346-2353, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30172809

RESUMO

Tropical theileriosis caused by Theileria annulata obligate parasite that infect ruminant animals, including Bos taurus. The disease results massive economic losses in livestock production worldwide. Here we describe cloning, expression and both biochemical and structural characterization of beta enolase from Bos taurus in vitro and in silico. The interconversion of 2­phosphoglycerate to phosphoenolpyruvate was catalyzed by enolase is a metalloenzyme in glycolytic pathway and gluconeogenesis. Enolase from Bos taurus was cloned, expressed and the protein was purified at 95% purity using cobalt column by affinity chromatography. The optimum enzymatic activity was calculated at pH 6.5. For the first time in the literature, the kinetic parameters of the enzyme, Vmax and Km, were measured as 0.1141 mM/min and 0.514 mM, respectively. Besides, Bos taurus enolase 3-dimensional structure was built by homology modelling to be used in silico analyses. The interactions of the enzyme-substrate complex were elucidated by molecular dynamics simulations for 100 ns. These interactions were found to be the same as experimentally determined interactions in yeast. These results would enable further structure based drug design studies with the biochemical characterization of the host organism Bos taurus enolase enzyme in vitro and the elucidation of behavior of enzyme-substrate complex in silico.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Bovinos , Concentração de Íons de Hidrogênio , Cinética , Ligação Proteica , Conformação Proteica , Temperatura
12.
Comput Biol Chem ; 64: 134-144, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27343873

RESUMO

Theileria annulata is an apicomplexan parasite which is responsible for tropical theileriosis in cattle. Due to resistance of T. annulata against commonly used antitheilerial drug, new drug candidates should be identified urgently. Enolase might be a druggable protein candidate which has an important role in glycolysis, and could also be related to several cellular functions as a moonlight protein. In this study; we have described three-dimensional models of open and closed conformations of T. annulata enolase by homology modeling method for the first time with the comprehensive domain, active site and docking analyses. Our results show that the enolase has similar folding patterns within enolase superfamily with conserved catalytic loops and active site residues. We have described specific insertions, possible plasminogen binding sites, electrostatic potential surfaces and positively charged pockets as druggable regions in T. annulata enolase.


Assuntos
Fosfopiruvato Hidratase/química , Theileria annulata/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA