Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Gastroenterology ; 165(4): 986-998.e11, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429363

RESUMO

BACKGROUND & AIMS: Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS: A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS: N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS: These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.


Assuntos
Enterotoxinas , Trocadores de Sódio-Hidrogênio , Camundongos , Animais , Humanos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Células CACO-2 , Trocadores de Sódio-Hidrogênio/metabolismo , Enterócitos/metabolismo , Sódio/metabolismo , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Diarreia/induzido quimicamente , Peptídeos/efeitos adversos , Microvilosidades/metabolismo
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175979

RESUMO

Cholesterol-rich membrane domains, also called lipid rafts (LRs), are specialized membrane domains that provide a platform for intracellular signal transduction. Membrane proteins often cluster in LRs that further aggregate into larger platform-like structures that are enriched in ceramides and are called ceramide-rich platforms (CRPs). The role of CRPs in the regulation of intestinal epithelial functions remains unknown. Down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- antiporter that is enriched in LRs. However, little is known regarding the mechanisms involved in the regulation of DRA activity. The air-liquid interface (ALI) was created by removing apical media for a specified number of days; from 12-14 days post-confluency, Caco-2/BBe cells or a colonoid monolayer were grown as submerged cultures. Confocal imaging was used to examine the dimensions of membrane microdomains that contained DRA. DRA expression and activity were enhanced in Caco-2/BBe cells and human colonoids using an ALI culture method. ALI causes an increase in acid sphingomyelinase (ASMase) activity, an enzyme responsible for enhancing ceramide content in the plasma membrane. ALI cultures expressed a larger number of DRA-containing platforms with dimensions >2 µm compared to cells grown as submerged cultures. ASMase inhibitor, desipramine, disrupted CRPs and reduced the ALI-induced increase in DRA expression in the apical membrane. Exposing normal human colonoid monolayers to ALI increased the ASMase activity and enhanced the differentiation of colonoids along with basal and forskolin-stimulated DRA activities. ALI increases DRA activity and expression by increasing ASMase activity and platform formation in Caco-2/BBe cells and by enhancing the differentiation of colonoids.


Assuntos
Antiporters , Lipídeos de Membrana , Humanos , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/metabolismo , Antiporters/metabolismo , Diferenciação Celular , Transportadores de Sulfato/metabolismo
3.
Am J Physiol Cell Physiol ; 324(6): C1263-C1273, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154494

RESUMO

In polarized intestinal epithelial cells, downregulated in adenoma (DRA) is an apical Cl-/[Formula: see text] exchanger that is part of neutral NaCl absorption under baseline conditions, but in cyclic adenosine monophosphate (cAMP)-driven diarrheas, it is stimulated and contributes to increased anion secretion. To further understand the regulation of DRA in conditions mimicking some diarrheal diseases, Caco-2/BBE cells were exposed to forskolin (FSK) and adenosine 5'-triphosphate (ATP). FSK and ATP stimulated DRA in a concentration-dependent manner, with ATP acting via P2Y1 receptors. FSK at 1 µM and ATP at 0.25 µM had minimal to no effect on DRA given individually; however, together, they stimulated DRA to levels seen with maximum concentrations of FSK and ATP alone. In Caco-2/BBE cells expressing the Ca2+ indicator GCaMP6s, ATP increased intracellular Ca2+ (Ca2+i) in a concentration-dependent manner, whereas FSK (1 µM), which by itself did not significantly alter Ca2+i, followed by 0.25 µM ATP produced a large increase in Ca2+ that was approximately equal to the elevation caused by 1 µM ATP. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) pretreatment prevented the ATP and FSK/ATP synergistically increased the DRA activity and the increase in Ca2+i caused by FSK/ATP. FSK/ATP synergistic stimulation of DRA was similarly observed in human colonoids. In Caco-2/BBE cells, subthreshold concentrations of FSK (cAMP) and ATP (Ca2+) synergistically increased Ca2+i and stimulated DRA activity with both being blocked by BAPTA-AM pretreatment. Diarrheal diseases, such as bile acid diarrhea, in which both cAMP and Ca2+ are elevated, are likely to be associated with stimulated DRA activity contributing to increased anion secretion, whereas separation of DRA from Na+/H+ exchanger isoform-3 (NHE3) contributes to reduced NaCl absorption.NEW & NOTEWORTHY The BB Cl-/[Formula: see text] exchanger DRA takes part in both neutral NaCl absorption and stimulated anion secretion. Using intestinal cell line, Caco-2/BBE high concentrations of cAMP and Ca2+ individually stimulated DRA activity, whereas low concentrations, which had no/minimal effect, synergistically stimulated DRA activity that required a synergistic increase in intracellular Ca2+. This study increases understanding of diarrheal diseases, such as bile salt diarrhea, in which both cAMP and elevated Ca2+ are involved.


Assuntos
Células Epiteliais , Cloreto de Sódio , Humanos , Células CACO-2 , Células Epiteliais/metabolismo , Ânions/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Diarreia/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo
4.
Front Physiol ; 13: 892112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928564

RESUMO

Use of human enteroids studied in the undifferentiated and differentiated state that mimic the intestinal crypt and villus, respectively, has allowed studies of multiple enterocyte populations, including a large population of enterocytes that are transitioning from the crypt to the villus. This population expresses NHE3, DRA, and CFTR, representing a combination of Na absorptive and anion secretory functions. In this cell population, these three transporters physically interact, which affects their baseline and regulated activities. A study of this cell population and differentiated Caco-2 cells transduced with NHE3 and endogenously expressing DRA and CFTR has allowed an understanding of previous studies in which cAMP seemed to stimulate and inhibit DRA at the same time. Understanding the contributions of these cells to overall intestinal transport function as part of the fasting and post-prandial state and their contribution to the pathophysiology of diarrheal diseases and some conditions with constipation will allow new approaches to drug development.

5.
Cell Physiol Biochem ; 56(1): 39-49, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35076190

RESUMO

BACKGROUND/AIMS: NHE3 (Na+/H+ exchanger3) and SLC26A3 (Cl-/HCO3- exchanger, DRA) are the major components of the intestinal neutral NaCl absorptive process and based on the intestinal segment, contribute to HCO3- absorption and HCO3- secretion. NHE3 and DRA are highly regulated by changes in second messengers, cAMP, cGMP and Ca2+. Precise and convenient measurement of exchanger activity is necessary to allow rapid study of physiologic and pharmacologic functions. Some epithelial cells are difficult to load with AM ester dyes and loading may not be uniform. METHODS: The use of a genetically modified fluorescent protein, mOrange2 was explored as an intracellular pH sensor protein to measure exchange activity of NHE3 and DRA. The model used was FRT cells stably expressing NHE3 or DRA with intracellular pH measured by changes of mOrange2 fluorescence intensity. Intracellular pH was monitored using a) Isolated single clones of FRT/mOrange2/HA-NHE3 cells studied in a confocal microscope with time-lapse live cell imaging under basal conditions and when NHE3 was inhibited by exposure to forskolin and stimulated by dexamethasone, b) coverslip grown FRT/mOrange2 cells expressing NHE3 or DRA using a computerized fluorometer with a perfused cuvette with standardization of the mOrange2 absorption and emission signal using K+/Nigericin as an internal standard in each experiment. RESULTS: A similar rate of intracellular alkalization by Na+ addition in cells expressing NHE3 and by Cl- removal in cells expressing DRA was found in mOrange2 expressing cells compared to the same cells loaded with BCECF-AM,both using the same pH calibration with K+/Nigericin. Using mOrange2 as the pH sensor, NHE3 basal activity was quantitated and shown to be inhibited by forskolin and stimulated by dexamethasone, and DRA was oppositely shown to be stimulated by forskolin, responses similar to results found using BCECF-AM. CONCLUSION: This study demonstrates that mOrange2 protein can be an effective alternate to BCECF-AM in measuring intracellular pH (preferred setting Ex520nm, Em 563nm) as affected by NHE3 and DRA activity, with the advantage, compared to AM ester dyes, that genetic expression can provide uniform expression of the pH sensor.


Assuntos
Antiporters/metabolismo , Fluoresceínas/farmacologia , Proteínas Luminescentes/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Transportadores de Sulfato/metabolismo , Animais , Antiporters/genética , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Ratos , Ratos Endogâmicos F344 , Trocador 3 de Sódio-Hidrogênio/genética , Transportadores de Sulfato/genética
6.
Am J Physiol Cell Physiol ; 317(4): C737-C748, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365292

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood death from diarrhea and the leading cause of Traveler's diarrhea. E. coli heat-stable enterotoxin (ST) is a major virulence factor of ETEC and inhibits the brush border Na/H exchanger NHE3 in producing diarrhea. NHE3 regulation involves multiprotein signaling complexes that form on its COOH terminus. In this study, the hypothesis was tested that ST signals via members of the Na/H exchanger regulatory factor (NHERF) family of scaffolding proteins, NHERF2, which had been previously shown to have a role, and now with concentration on a role for NHERF3. Two models were used: mouse small intestine and Caco-2/BBe cells. In both models, ST rapidly increased intracellular cGMP, inhibited NHE3 activity, and caused a quantitatively similar decrease in apical expression of NHE3. The transport effects were NHERF3 and NHERF2 dependent. Also, mutation of the COOH-terminal amino acids of NHERF3 supported that NHERF3-NHERF2 heterodimerization was likely to account for this dual dependence. The ST increase in cGMP in both models was partially dependent on NHERF3. The intracellular signaling pathways by which ST-cGMP inhibits NHE3 were different in mouse jejunum (activation of cGMP kinase II, cGKII) and Caco-2 cells, which do not express cGKII (elevation of intracellular Ca2+ concentration [Ca2+]i). The ST elevation of [Ca2+]i was from intracellular stores and was dependent on NHERF3-NHERF2. This study shows that intracellular signaling in the same diarrheal model in multiple cell types may be different; this has implications for therapeutic strategies, which often assume that models have similar signaling mechanisms.


Assuntos
Toxinas Bacterianas/farmacologia , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/farmacologia , Proteínas de Membrana/efeitos dos fármacos , Trocador 3 de Sódio-Hidrogênio/efeitos dos fármacos , Animais , Células CACO-2 , GMP Cíclico/metabolismo , Diarreia/induzido quimicamente , Escherichia coli/efeitos dos fármacos , Humanos , Camundongos Transgênicos
7.
FASEB J ; 33(10): 10924-10934, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31268738

RESUMO

Bile acid diarrhea (BAD) is common with ileal resection, Crohn's disease, and diarrhea-predominant irritable bowel syndrome. Here, we demonstrate the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor (R)-benzopyrimido-pyrrolo-oxazine-dione-27 (BPO-27) in reducing bile acid-induced fluid and electrolyte secretion in colon. Short-circuit current measurements in human T84 colonic epithelial cells and planar colonic enteroid cultures showed a robust secretory response following mucosal but not serosal addition of chenodeoxycholic acid (CDCA) or its taurine conjugate, which was fully blocked by CFTR inhibitors, including (R)-BPO-27. (R)-BPO-27 also fully blocked CDCA-induced secretory current in murine colon. CFTR activation by CDCA primarily involved Ca2+ signaling. In closed colonic loops in vivo, luminal CDCA produced a robust secretory response, which was reduced by ∼70% by (R)-BPO-27 or in CFTR-deficient mice. In a rat model of BAD produced by intracolonic infusion of CDCA, (R)-BPO-27 reduced the elevation in stool water content by >55%. These results implicate CFTR activation in the colon as a major prosecretory mechanism of CDCA, a bile acid implicated in BAD, and support the potential therapeutic efficacy of CFTR inhibition in bile acid-associated diarrheas.-Duan, T., Cil, O., Tse, C. M., Sarker, R., Lin, R., Donowitz, M., Verkman, A. S. Inhibition of CFTR-mediated intestinal chloride secretion as potential therapy for bile acid diarrhea.


Assuntos
Ácido Quenodesoxicólico/toxicidade , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Diarreia/tratamento farmacológico , Secreções Intestinais/metabolismo , Oxazinas/uso terapêutico , Pirimidinonas/uso terapêutico , Pirróis/uso terapêutico , Animais , Linhagem Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diarreia/metabolismo , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Oxazinas/farmacologia , Pirimidinonas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Cell Mol Gastroenterol Hepatol ; 7(3): 641-653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30659943

RESUMO

BACKGROUND & AIMS: SLC26A3 (DRA) is an electroneutral Cl-/HCO3- exchanger that is present in the apical domain of multiple intestinal segments. An area that has continued to be poorly understood is related to DRA regulation in acute adenosine 3',5'-cyclic monophosphate (cAMP)-related diarrheas, in which DRA appears to be both inhibited as part of NaCl absorption and stimulated to contribute to increased HCO3- secretion. Different cell models expressing DRA have shown that cAMP inhibits, stimulates, or does not affect its activity. METHODS: This study re-evaluated cAMP regulation of DRA using new tools, including a successful knockout cell model, a specific DRA inhibitor (DRAinh-A250), specific antibodies, and a transport assay that did not rely on nonspecific inhibitors. The studies compared DRA regulation in colonoids made from normal human colon with regulation in the colon cancer cell line, Caco-2. RESULTS: DRA is an apical protein in human proximal colon, differentiated colonoid monolayers, and Caco-2 cells. It is glycosylated and appears as 2 bands. cAMP (forskolin) acutely stimulated DRA activity in human colonoids and Caco-2 cells. In these cells, DRA is the predominant apical Cl-/HCO3- exchanger and is inhibited by DRAinh-A250 with a median inhibitory concentration of 0.5 and 0.2 µmol/L, respectively. However, there was no effect of cAMP in HEK293/DRA cells that lacked a cystic fibrosis transmembrane conductance regulator (CFTR). When CFTR was expressed in HEK293/DRA cells, cAMP also stimulated DRA activity. In all cases, cAMP stimulation of DRA was not inhibited by CFTRinh-172. CONCLUSIONS: DRA is acutely stimulated by cAMP by a process that is CFTR-dependent, but appears to be one of multiple regulatory effects of CFTR that does not require CFTR activity.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Colo/metabolismo , AMP Cíclico/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transportadores de Sulfato/metabolismo , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Colforsina/farmacologia , Células HEK293 , Humanos , Transporte de Íons , Organoides/efeitos dos fármacos , Organoides/metabolismo , Reprodutibilidade dos Testes
9.
Mol Biol Cell ; 28(13): 1754-1767, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495796

RESUMO

Casein kinase 2 (CK2) binds to the NHE3 C-terminus and constitutively phosphorylates a downstream site (S719) that accounts for 40% of basal NHE3 activity. The role of CK2 in regulation of NHE3 activity in polarized Caco-2/bbe cells was further examined by mutation of NHE3-S719 to A (not phosphorylated) or D (phosphomimetic). NHE3-S719A but not -S719D had multiple changes in NHE3 activity: 1) reduced basal NHE3 activity-specifically, inhibition of the PI3K/AKT-dependent component; 2) reduced acute stimulation of NHE3 activity by LPA/LPA5R stimulation; and 3) reduced acute inhibition of NHE3 activity-specifically, elevated Ca2+ related (carbachol/Ca2+ ionophore), but there was normal inhibition by forskolin and hyperosmolarity. The S719A mutant had reduced NHE3 complex size, reduced expression in lipid rafts, increased BB mobile fraction, and reduced binding to multiple proteins that bind throughout the NHE3 intracellular C-terminus, including calcineurin homologous protein, the NHERF family and SNX27 (related PDZ domains). These studies show that phosphorylation of the NHE3 at a single amino acid in the distal part of the C-terminus affects multiple aspects of NHE3 complex formation and changes the NHE3 lipid raft distribution, which cause changes in specific aspects of basal as well as acutely stimulated and inhibited Na+/H+ exchange activity.


Assuntos
Caseína Quinase II/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Células CACO-2 , Cálcio/metabolismo , Carbacol/metabolismo , Células Epiteliais/metabolismo , Exocitose , Humanos , Lisofosfolipídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas , Fosforilação , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio
10.
Am J Physiol Gastrointest Liver Physiol ; 313(2): G129-G137, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495802

RESUMO

Na+/H+ exchanger NHE3 mediates the majority of intestinal and renal electroneutral sodium absorption. Dysfunction of NHE3 is associated with a variety of diarrheal diseases. We previously reported that the NHE3 gene (SLC9A3) has more than 400 single-nucleotide polymorphisms (SNPs) but few nonsynonymous polymorphisms. Among the latter, one polymorphism (rs2247114-G>A), which causes a substitution from arginine to cysteine at amino acid position 799 (p.R799C), is common in Asian populations. To improve our understanding of the population distribution and potential clinical significance of the NHE3-799C variant, we investigated the frequency of this polymorphism in different ethnic groups using bioinformatics analyses and in a cohort of Japanese patients with cardiovascular or renal disease. We also characterized the function of human NHE3-799C and its sensitivity to regulatory ligands in an in vitro model. NHE3-799C had an allele frequency of 29.5-57.6% in Asian populations, 11.1-23.6% in European populations, and 10.2-22.7% in African populations. PS120/FLAG-NHERF2 fibroblasts stably expressing NHE3-799C had lower total protein expression but a higher percentage of surface expression than those expressing NHE3-799R. NHE3-799C had similar basal activity to NHE3-799R and was similarly stimulated or inhibited, by serum or forskolin, respectively. Tenapanor, a small-molecule NHE3 inhibitor, dose-dependently inhibited NHE3-799R and NHE3-799C activities. The IC50 values of tenapanor for NHE3-799C and NHE3-799R were significantly different, but both were in the nanomolar range. These results suggest that NHE3-799C is a common variant enriched in Asian populations, is not associated with compromised function or abnormal regulation, and is unlikely to contribute to clinical disease.NEW & NOTEWORTHY This study reports results on the functional significance of human NHE3-799C under basal conditions and in response to regulatory ligands, including a novel NHE3 inhibitor called tenapanor. We demonstrate that NHE3-799C is a common variant of NHE3 that is enriched in Asian populations; however, in contrast to our previous studies using rabbit NHE3, its presence seems to have limited clinical significance in humans and is not associated with compromised function or abnormal transport regulation.


Assuntos
Alelos , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Trocadores de Sódio-Hidrogênio/genética , Povo Asiático/genética , Doenças Cardiovasculares/genética , Biologia Computacional , Genótipo , Humanos , Nefropatias/genética , Mutação , Trocador 3 de Sódio-Hidrogênio , População Branca/genética
11.
J Biol Chem ; 292(20): 8279-8290, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28283572

RESUMO

NHE3 directly binds Na+/H+ exchanger regulatory factor (NHERF) family scaffolding proteins that are required for many aspects of NHE3 regulation. The NHERFs bind both to an internal region (amino acids 586-660) of the NHE3 C terminus and to the NHE3 C-terminal four amino acids. The internal NHERF-binding region contains both putative Class I (-592SAV-) and Class II (-595CLDM-) PDZ-binding motifs (PBMs). Point mutagenesis showed that only the Class II motif contributes to NHERF binding. In this study, the roles in regulation of NHE3 activity of these two PBMs were investigated, revealing the following findings. 1) Interaction occurred between these binding sites because mutation of either removed nearly all NHERF binding. 2) Mutations in either significantly reduced basal NHE3 activity. Total and percent plasma membrane (PM) NHE3 protein expression was reduced in the C-terminal but not in the internal PBD mutation. 3) cGMP- and Ca2+-mediated inhibition of NHE3 was impaired in both the internal and the C-terminal PBM mutations. 4) There was a significant reduction in half-life of the PM pool of NHE3 in only the internal PBM mutation but no change in total NHE3 half-life in either. 5) There were some differences in NHE3-associating proteins in the two PBM mutations. In conclusion, NHE3 binds to NHERF proteins via both an internal Class II PBM and C-terminal Class I PBM, which interact. The former determines NHE3 stability in the PM, and the latter determines total expression and percent PM expression.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , GMP Cíclico/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Membrana Celular/genética , GMP Cíclico/genética , Humanos , Mutação , Domínios PDZ , Fosfoproteínas/genética , Ligação Proteica/fisiologia , Estabilidade Proteica , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
12.
Hum Mol Genet ; 24(23): 6614-23, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26358773

RESUMO

Congenital sodium diarrhea (CSD) refers to an intractable diarrhea of intrauterine onset with high fecal sodium loss. CSD is clinically and genetically heterogeneous. Syndromic CSD is caused by SPINT2 mutations. While we recently described four cases of the non-syndromic form of CSD that were caused by dominant activating mutations in intestinal receptor guanylate cyclase C (GC-C), the genetic cause for the majority of CSD is still unknown. Therefore, we aimed to determine the genetic cause for non-GC-C non-syndromic CSD in 18 patients from 16 unrelated families applying whole-exome sequencing and/or chromosomal microarray analyses and/or direct Sanger sequencing. SLC9A3 missense, splicing and truncation mutations, including an instance of uniparental disomy, and whole-gene deletion were identified in nine patients from eight families with CSD. Two of these nine patients developed inflammatory bowel disease (IBD) at 4 and 16 years of age. SLC9A3 encodes Na(+)/H(+) antiporter 3 (NHE3), which is the major intestinal brush-border Na(+)/H(+) exchanger. All mutations were in the NHE3 N-terminal transport domain, and all missense mutations were in the putative membrane-spanning domains. Identified SLC9A3 missense mutations were functionally characterized in plasma membrane NHE null fibroblasts. SLC9A3 missense mutations compromised NHE3 activity by reducing basal surface expression and/or loss of basal transport function of NHE3 molecules, whereas acute regulation was normal. This study identifies recessive mutations in NHE3, a downstream target of GC-C, as a cause of CSD and implies primary basal NHE3 malfunction as a predisposition for IBD in a subset of patients.


Assuntos
Anormalidades Múltiplas/genética , Diarreia/congênito , Erros Inatos do Metabolismo/genética , Mutação , Trocadores de Sódio-Hidrogênio/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Diarreia/genética , Diarreia/metabolismo , Diarreia/fisiopatologia , Feminino , Genes Recessivos , Humanos , Lactente , Recém-Nascido , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/metabolismo , Intestinos/fisiopatologia , Masculino , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/fisiopatologia , Microvilosidades/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Trocador 3 de Sódio-Hidrogênio , Adulto Jovem
13.
Biochem J ; 470(1): 77-90, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26251448

RESUMO

In the brush border of intestinal and kidney epithelial cells, scaffolding proteins ezrin, Na(+)-H(+) exchanger regulatory factor (NHERF)1 and NHERF2 play important roles in linking transmembrane proteins to the cytoskeleton and assembling signalling regulatory complexes. The last 30 carboxyl residues of NHERF1 and NHERF2 form the EBDs [ezrin, radixin and moesin (ERM)-binding domain]. The current study found that NHERF1/2 contain an ERM-binding regulatory sequence (EBRS), which facilitates the interaction between the EBD and ezrin. The EBRSs are located within 24 and 19 residues immediately upstream of EBDs for NHERF1 and NHERF2 respectively. In OK (opossum kidney) epithelial cells, EBRSs are necessary along with the EBD to distribute NHERF1 and NHERF2 exclusively to the apical domain. Furthermore, phosphorylation of Ser(303) located in the EBRS of NHERF2, decreases the binding affinity for ezrin, dislocates apical NHERF2 into the cytosol and increases the NHERF2 microvillar mobility rate. Moreover, increased phosphorylation of Ser(303) was functionally significant preventing acute stimulation of NHE3 (Na(+)-H(+) exchanger 3) activity by dexamethasone.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dexametasona/farmacologia , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Células CACO-2 , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Gambás , Fosfoproteínas/genética , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Fatores de Transcrição/genética
14.
Mol Biol Cell ; 26(11): 2030-43, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25851603

RESUMO

Sorting nexin 27 (SNX27) contains a PDZ domain that is phylogenetically related to the PDZ domains of the NHERF proteins. Studies on nonepithelial cells have shown that this protein is located in endosomes, where it regulates trafficking of cargo proteins in a PDZ domain-dependent manner. However, the role of SNX27 in trafficking of cargo proteins in epithelial cells has not been adequately explored. Here we show that SNX27 directly interacts with NHE3 (C-terminus) primarily through the SNX27 PDZ domain. A combination of knockdown and reconstitution experiments with wild type and a PDZ domain mutant (GYGF → GAGA) of SNX27 demonstrate that the PDZ domain of SNX27 is required to maintain basal NHE3 activity and surface expression of NHE3 in polarized epithelial cells. Biotinylation-based recycling and degradation studies in intestinal epithelial cells show that SNX27 is required for the exocytosis (not endocytosis) of NHE3 from early endosome to plasma membrane. SNX27 is also required to regulate the retention of NHE3 on the plasma membrane. The findings of the present study extend our understanding of PDZ-mediated recycling of cargo proteins from endosome to plasma membrane in epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Microvilosidades/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Exocitose , Humanos , Domínios PDZ , Transporte Proteico , Trocador 3 de Sódio-Hidrogênio
15.
Am J Physiol Cell Physiol ; 308(9): C758-66, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25715704

RESUMO

Genetic determinants appear to play a role in susceptibility to chronic diarrhea, but the genetic abnormalities involved have only been identified in a few conditions. The Na⁺/H⁺ exchanger 3 (NHE3) accounts for a large fraction of physiologic intestinal Na⁺ absorption. It is highly regulated through effects on its intracellular COOH-terminal regulatory domain. The impact of genetic variation in the NHE3 gene, such as single nucleotide polymorphisms (SNPs), on transporter activity remains unexplored. From a total of 458 SNPs identified in the entire NHE3 gene, we identified three nonsynonymous mutations (R474Q, V567M, and R799C), which were all in the protein's intracellular COOH-terminal domain. Here we evaluated whether these SNPs affect NHE3 activity by expressing them in a mammalian cell line that is null for all plasma membrane NHEs. These variants significantly reduced basal NHE3 transporter activity through a reduction in intrinsic NHE3 function in variant R474Q, abnormal trafficking in variant V567M, or defects in both intrinsic NHE3 function and trafficking in variant R799C. In addition, variants NHE3 R474Q and R799C failed to respond to acute dexamethasone stimulation, suggesting cells with these mutant proteins might be defective in NHE3 function during postprandial stimulation and perhaps under stressful conditions. Finally, variant R474Q was shown to exhibit an aberrant interaction with calcineurin B homologous protein (CHP), an NHE3 regulatory protein required for basal NHE3 activity. Taken together, these results demonstrate decreased transport activity in three SNPs of NHE3 and provide mechanistic insight into how these SNPs impact NHE3 function.


Assuntos
Membrana Celular/metabolismo , Polimorfismo de Nucleotídeo Único , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Transporte Biológico , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Dexametasona/farmacologia , Regulação para Baixo , Genótipo , Humanos , Mutação , Fenótipo , Ligação Proteica , Transporte Proteico , Coelhos , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Transfecção
16.
J Biol Chem ; 290(4): 1952-65, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25480791

RESUMO

The epithelial brush-border Na(+)/H(+) exchanger NHE3 is acutely inhibited by cGKII/cGMP, but how cGKII inhibits NHE3 is unknown. This study tested the hypothesis that cGMP inhibits NHE3 by phosphorylating it and altering its membrane trafficking. Studies were carried out in PS120/NHERF2 and in Caco-2/Bbe cells overexpressing HA-NHE3 and cGKII, and in mouse ileum. NHE3 activity was measured with 2',7'-bis(carboxyethyl)-S-(and 6)carboxyfluorescein acetoxy methylester/fluorometry. Surface NHE3 was determined by cell surface biotinylation. Identification of NHE3 phosphorylation sites was by iTRAQ/LC-MS/MS with TiO2 enrichment and immunoblotting with specific anti-phospho-NHE3 antibodies. cGMP/cGKII rapidly inhibited NHE3, which was associated with reduced surface NHE3. cGMP/cGKII increased NHE3 phosphorylation at three sites (rabbit Ser(554), Ser(607), and Ser(663), equivalent to mouse Ser(552), Ser(605), and Ser(659)), all of which had to be present at the same time for cGMP to inhibit NHE3. NHE3-Ser(663) phosphorylation was not necessary for cAMP inhibition of NHE3. Dexamethasone (4 h) stimulated wild type NHE3 activity and increased surface expression but failed to stimulate NHE3 activity or increase surface expression when NHE3 was mutated to either S663A or S663D. We conclude that 1) cGMP inhibition of NHE3 is associated with phosphorylation of NHE3 at Ser(554), Ser(607), and Ser(663), all of which are necessary for cGMP/cGKII to inhibit NHE3. 2) Dexamethasone stimulates NHE3 by phosphorylation of a single site, Ser(663). The requirement for three phosphorylation sites in NHE3 for cGKII inhibition, and for phosphorylation of one of these sites for dexamethasone stimulation of NHE3, is a unique example of regulation by phosphorylation.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Sítios de Ligação , Células CACO-2 , Membrana Celular/metabolismo , Dexametasona/química , Humanos , Mucosa Intestinal/metabolismo , Espectrometria de Massas , Camundongos , Microvilosidades/metabolismo , Mutagênese , Fosforilação , Estrutura Terciária de Proteína , Transporte Proteico , Serina/química , Trocador 3 de Sódio-Hidrogênio , Propriedades de Superfície , Transfecção
17.
J Cell Sci ; 127(Pt 16): 3535-45, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24928903

RESUMO

The intestinal brush border Na(+)/H(+) exchanger NHE3 is tightly regulated through changes in its endocytosis and exocytosis. Myosin VI, a minus-end-directed actin motor, has been implicated in endocytosis at the inter-microvillar cleft and during vesicle remodeling in the terminal web. Here, we asked whether myosin VI also regulates NHE3 movement down the microvillus. The basal NHE3 activity and its surface amount, determined by fluorometry of the ratiometric pH indicator BCECF and biotinylation assays, respectively, were increased in myosin-VI-knockdown (KD) Caco-2/Bbe cells. Carbachol (CCH) and forskolin (FSK) stimulated NHE3 endocytosis in control but not in myosin VI KD cells. Importantly, immunoelectron microscopy results showed that NHE3 was preferentially localized in the basal half of control microvilli but in the distal half in myosin VI KD cells. Treatment with dynasore duplicated some aspects of myosin VI KD: it increased basal surface NHE3 activity and prevented FSK-induced NHE3 endocytosis. However, NHE3 had an intermediate distribution along the microvillus (between that in myosin VI KD and untreated cells) in dynasore-treated cells. We conclude that myosin VI is required for basal and stimulated endocytosis of NHE3 in intestinal cells, and suggest that myosin VI also moves NHE3 down the microvillus.


Assuntos
Células Epiteliais/metabolismo , Intestinos/citologia , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Carbacol/metabolismo , Linhagem Celular , Endocitose , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvilosidades/genética , Cadeias Pesadas de Miosina/genética , Transporte Proteico , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
18.
J Biol Chem ; 289(29): 20039-53, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24867958

RESUMO

NHERF1, NHERF2, and NHERF3 belong to the NHERF (Na(+)/H(+) exchanger regulatory factor) family of PSD-95/Discs-large/ZO-1 (PDZ) scaffolding proteins. Individually, each NHERF protein has been shown to be involved in the regulation of multiple receptors or transporters including Na(+)/H(+) exchanger 3 (NHE3). Although NHERF dimerizations have been reported, results have been inconsistent, and the physiological function of NHERF dimerizations is still unknown. The current study semiquantitatively compared the interaction strength among all possible homodimerizations and heterodimerizations of these three NHERF proteins by pulldown and co-immunoprecipitation assays. Both methods showed that NHERF2 and NHERF3 heterodimerize as the strongest interaction among all NHERF dimerizations. In vivo NHERF2/NHERF3 heterodimerization was confirmed by FRET and FRAP (fluorescence recovery after photobleach). NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. The NHERF3-4A mutant is defective in heterodimerization with NHERF2 and does not support the inhibition of NHE3 by carbachol. This suggests a role for NHERF2/NHERF3 heterodimerization in the regulation of NHE3 activity. In addition, both PDZ domains of NHERF2 could be simultaneously occupied by NHERF3 and another ligand such as NHE3, α-actinin-4, and PKCα, promoting formation of NHE3 macrocomplexes. This study suggests that NHERF2/NHERF3 heterodimerization mediates the formation of NHE3 macrocomplexes, which are required for the inhibition of NHE3 activity by carbachol.


Assuntos
Carbacol/farmacologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Substituição de Aminoácidos , Animais , Células CACO-2 , Linhagem Celular , Cricetinae , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Domínios PDZ , Fosfoproteínas/genética , Multimerização Proteica , Coelhos , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
19.
Am J Physiol Cell Physiol ; 307(1): C55-65, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24760985

RESUMO

The Na(+)/H(+) exchanger 3 (NHE3) is a brush border (BB) Na(+)/H(+) antiporter that accounts for the majority of physiologic small intestinal and renal Na(+) absorption. It is regulated physiologically and in disease via changes in endocytosis/exocytosis. Paradoxically, NHE3 is fixed to the microvillar (MV) actin cytoskeleton and has little basal mobility. This fixation requires NHE3 binding to the multi-PDZ domain scaffold proteins Na(+)/H(+) exchanger regulatory factor (NHERF)1 and NHERF2 and to ezrin. Coordinated release of NHE3 from the MV cytoskeleton has been demonstrated during both stimulation and inhibition of NHE3. However, the signaling molecules involved in coordinating NHE3 trafficking and cytoskeletal association have not been identified. This question was addressed by studying lysophosphatidic acid (LPA) stimulation of NHE3 in polarized renal proximal tubule opossum kidney (OK) cells that occurs via apical LPA5 receptors and is NHERF2 dependent and mediated by epidermal growth factor receptor (EGFR), Rho/Rho-associated kinase (ROCK), and ERK. NHE3 activity was determined by BCECF/fluorometry and NHE3 microvillar mobility by FRAP/confocal microscopy using NHE3-EGFP. Apical LPA (3 µM)/LPA5R stimulated NHE3 activity, increased NHE3 mobility, and decreased the NHE3/NHERF2 association. The LPA stimulation of NHE3 was also PKCδ dependent. PKCδ was necessary for LPA stimulation of NHE3 mobility and NHE3/NHERF2 association. Moreover, the LPA-induced translocation to the membrane of PKCδ was both ERK and phospholipase C dependent with ERK acting upstream of PLC. We conclude that LPA stimulation of NHE3 exocytosis includes a signaling pathway that regulates fixation of NHE3 to the MV cytoskeleton. This involves a signaling module consisting of ERK-PLC-PKCδ, which dynamically and reversibly releases NHE3 from NHERF2 to contribute to the changes in NHE3 MV mobility.


Assuntos
Células Epiteliais/efeitos dos fármacos , Exocitose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Fosfoproteínas/metabolismo , Proteína Quinase C-delta/metabolismo , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Epiteliais/enzimologia , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Túbulos Renais Proximais/enzimologia , Microvilosidades/efeitos dos fármacos , Microvilosidades/enzimologia , Gambás , Inibidores de Fosfodiesterase/farmacologia , Fosfoproteínas/genética , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/genética , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Interferência de RNA , Coelhos , Receptores de Ácidos Lisofosfatídicos/agonistas , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Fatores de Tempo , Transfecção , Fosfolipases Tipo C/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
20.
J Biol Chem ; 289(9): 5449-61, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24398676

RESUMO

Basal activity of the BB Na(+)/H(+) exchanger NHE3 requires multiprotein complexes that form on its C terminus. One complex stimulates basal NHE3 activity and contains ezrin and phosphoinositides as major components; how it stimulates NHE3 activity is not known. This study tested the hypothesis that ezrin dynamically associates with this complex, which sets ezrin binding. NHE3 activity was reduced by an Akti. This effect was eliminated if ezrin binding to NHE3 was inhibited by a point mutant. Recombinant AKT phosphorylated NHE3 C terminus in the domain ezrin directly binds. This domain (amino acids 475-589) is predicted to be α-helical and contains a conserved cluster of three serines (Ser(515), Ser(522), and Ser(526)). Point mutations of two of these (S515A, S515D, or S526A) reduced basal NHE3 activity and surface expression and had no Akti inhibition. S526D had NHE3 activity equal to wild type with normal Akti inhibition. Ezrin binding to NHE3 was regulated by Akt, being eliminated by Akti. NHE3-S515A and -S526D did not bind ezrin; NHE3-S515D had reduced ezrin binding; NHE3-S526D bound ezrin normally. NHE3-Ser(526) is predicted to be a GSK-3 kinase phosphorylation site. A GSK-3 inhibitor reduced basal NHE3 activity as well as ezrin-NHE3 binding, and this effect was eliminated in NHE3-S526A and -S526D mutants. The conclusions were: 1) NHE3 basal activity is regulated by a signaling complex that is controlled by sequential effects of two kinases, Akt and GSK-3, which act on a Ser cluster in the same NHE3 C-terminal domain that binds ezrin; and 2) these kinases regulate the dynamic association of ezrin with NHE3 to affect basal NHE3 activity.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas do Citoesqueleto/genética , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Mutação Puntual , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Coelhos , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA