Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Pain Res (Lausanne) ; 2: 675787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295460

RESUMO

As targeted therapies help patients with advanced cancer live longer, interventions for management of axial spine pain will become more common. Unfortunately, the indications for and safety of these procedures have been relatively unexplored compared with non-cancer adults. This review focuses on the following aspects of axial spine pain management in patients with vertebral metastatic disease: (1) pathophysiology and symptoms of cancer- and non-cancer-related spine pain; (2) safety and efficacy of non-interventional rehabilitation approaches to treat this pain; (3) considerations for interventional pain approaches to acute and chronic pain in patients with vertebral metastatic disease. This review also summarizes gaps in the literature and describes specific cases in which the described interventions have been applied.

2.
BMC Genomics ; 21(Suppl 11): 830, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372593

RESUMO

BACKGROUND: Single-cell sequencing enables us to better understand genetic diseases, such as cancer or autoimmune disorders, which are often affected by changes in rare cells. Currently, no existing software is aimed at identifying single nucleotide variations or micro (1-50 bp) insertions and deletions in single-cell RNA sequencing (scRNA-seq) data. Generating high-quality variant data is vital to the study of the aforementioned diseases, among others. RESULTS: In this study, we report the design and implementation of Red Panda, a novel method to accurately identify variants in scRNA-seq data. Variants were called on scRNA-seq data from human articular chondrocytes, mouse embryonic fibroblasts (MEFs), and simulated data stemming from the MEF alignments. Red Panda had the highest Positive Predictive Value at 45.0%, while other tools-FreeBayes, GATK HaplotypeCaller, GATK UnifiedGenotyper, Monovar, and Platypus-ranged from 5.8-41.53%. From the simulated data, Red Panda had the highest sensitivity at 72.44%. CONCLUSIONS: We show that our method provides a novel and improved mechanism to identify variants in scRNA-seq as compared to currently existing software. However, methods for identification of genomic variants using scRNA-seq data can be still improved.


Assuntos
Fibroblastos , Polimorfismo de Nucleotídeo Único , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Análise de Sequência de RNA , Análise de Célula Única , Software , Sequenciamento do Exoma
3.
PLoS One ; 6(9): e24426, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935409

RESUMO

Pre-clinical studies provide compelling evidence that Eph family receptor tyrosine kinases (RTKs) and ligands promote cancer growth, neovascularization, invasion, and metastasis. Tumor suppressive roles have also been reported for the receptors, however, creating a potential barrier for clinical application. Determining how these observations relate to clinical outcome is a crucial step for translating the biological and mechanistic data into new molecularly targeted therapies. We investigated eph and ephrin expression in human breast cancer relative to endpoints of overall and/or recurrence-free survival in large microarray datasets. We also investigated protein expression in commercial human breast tissue microarrays (TMA) and Stage I prognostic TMAs linked to recurrence outcome data. We found significant correlations between ephA2, ephA4, ephA7, ephB4, and ephB6 and overall and/or recurrence-free survival in large microarray datasets. Protein expression in TMAs supported these trends. While observed no correlation between ephrin ligand expression and clinical outcome in microarray datasets, ephrin-A1 and EphA2 protein co-expression was significantly associated with recurrence in Stage I prognostic breast cancer TMAs. Our data suggest that several Eph family members are clinically relevant and tractable targets for intervention in human breast cancer. Moreover, profiling Eph receptor expression patterns in the context of relevant ligands and in the context of stage may be valuable in terms of diagnostics and treatment.


Assuntos
Neoplasias da Mama/metabolismo , Efrinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Mama/genética , Efrina-A1/genética , Efrina-A1/metabolismo , Efrinas/genética , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Receptor EphA2/genética , Receptor EphA2/metabolismo , Receptor EphA4/genética , Receptor EphA4/metabolismo , Receptor EphA7/genética , Receptor EphA7/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Receptor EphB6/genética , Receptor EphB6/metabolismo , Análise Serial de Tecidos
4.
Dev Cell ; 20(3): 376-87, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21397848

RESUMO

The mammalian Phospholipase D MitoPLD facilitates mitochondrial fusion by generating the signaling lipid phosphatidic acid (PA). The Drosophila MitoPLD homolog Zucchini (Zuc), a proposed cytoplasmic nuclease, is required for piRNA generation, a critical event in germline development. We show that Zuc localizes to mitochondria and has MitoPLD-like activity. Conversely, MitoPLD(-/-) mice exhibit the meiotic arrest, DNA damage, and male sterility characteristic of mice lacking piRNAs. The primary function of MitoPLD seems to be the generation of mitochondrial-surface PA. This PA in turn recruits the phosphatase Lipin 1, which converts PA to diacylglycerol and promotes mitochondrial fission, suggesting a mechanism for mitochondrial morphology homeostasis. MitoPLD and Lipin 1 have opposing effects on mitochondria length and on intermitochondrial cement (nuage), a structure found between aggregated mitochondria that is implicated in piRNA generation. We propose that mitochondrial-surface PA generated by MitoPLD/Zuc recruits or activates nuage components critical for piRNA production.


Assuntos
Proteínas de Drosophila/metabolismo , Endorribonucleases/metabolismo , Células Germinativas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfolipase D/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia , Espermatogênese/fisiologia , Animais , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrião de Mamíferos/citologia , Endorribonucleases/genética , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Células Germinativas/citologia , Células Germinativas/fisiologia , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/genética , RNA Interferente Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA