Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Divers ; 111(1): 1-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899100

RESUMO

This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

2.
Front Microbiol ; 12: 719000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512597

RESUMO

Climate change agitates interactions between organisms and the environment and forces them to adapt, migrate, get replaced by others, or extinct. Marine environments are extremely sensitive to climate change that influences their ecological functions and microbial community including fungi. Fungi from marine habitats are engaged and adapted to perform diverse ecological functions in marine environments. Several studies focus on how complex interactions with the surrounding environment affect fungal evolution and their adaptation. However, a review addressing the adaptation of marine fungi to climate change is still lacking. Here we have discussed the adaptations of fungi in the marine environment with an example of Hortaea werneckii and Aspergillus terreus which may help to reduce the risk of climate change impacts on marine environments and organisms. We address the ecology and evolution of marine fungi and the effects of climate change on them to explain the adaptation mechanism. A review of marine fungal adaptations will show widespread effects on evolutionary biology and the mechanism responsible for it.

3.
Microb Pathog ; 151: 104723, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33460747

RESUMO

Signal dependent microbial communication in Pseudomonas aeruginosa PAO1 is a typical phenomenon mediated by acyl homo-serine lactone molecules that helps in developing biofilm and enhance antibiotic resistance. Microbial sources provide insight to the hidden treasure of secondary metabolites, and these structurally diversified chemical motifs can be used as antimicrobial and anti-infective agents. In the present study, endophytic fungus, Colletotrichum gloeosporioides HM3 isolated from Carica papaya leaves was explored for anti-infective potential against P. aeruginosa PAO1. The crude extract of C. gloeosporioides HM3 displayed bacteriostatic effect on P. aeruginosa PAO1 growth at 750 µg/ml concentration. A significant decline was observed in the production of quorum sensing regulated virulence factors, i.e. 56.32%, 62.54%, and 66.67% of pyocyanin, chitinase, and elastase enzyme, respectively. A drastic reduction in pathogenic determinant behaviour after treatment with crude extract of C. gloeosporioides HM3 i.e. EPS, rhamnolipid, and HCN production was noted. Light microscopy and CLSM analysis revealed that fungal extract treatment has reduced bacterial ability to form dense biofilm architecture. In silico analysis demonstrated the binding efficiency of bioactive compound, 4-(2,3-dimethoxybenzylidene)-3-methyl-1-(4-nitrophenyl)-2-pyrazolin-5-one, which is equipotent to the natural ligand and displayed a docking score of -5.436 kcal/mol with QS transcriptional regulator (LasR). Whereas the compound Acetamide, n-[tetrahydro-3-(phenylmethyl) thieno [3,4-d]thiazol-2 (3 h)-ylidene]-, s,s-dioxide exhibits a docking score of -4.088 kcal/mol (LasR) and -1.868 kcal/mol (RhlR) with cognate receptor proteins. Henceforth, the research report suggests C. gloeosporioides HM3 derived metabolites could be considered as a potential inhibitors of QS regulated virulence factors and biofilm production in P. aeruginosa PAO1.


Assuntos
Colletotrichum , Percepção de Quorum , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biofilmes , Pseudomonas aeruginosa , Virulência , Fatores de Virulência/genética
4.
Indian J Microbiol ; 60(1): 70-77, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32089576

RESUMO

Endophytic fungi provide rich reservoir for novel antimicrobial compounds. An endophytic fungus, from Carica papaya plant identified as Phomopsis tersa, was investigated for attenuating the quorum sensing mediated pathogenicity of Pseudomonas aeruginosa PAO1. Crude extract of P. tersa was found to reduce the production of redox-active pigments-pyocyanin and pyoverdine in P. aeruginosa PAO1 by 92.46% and 71.55%, respectively at sub-MIC concentration of 900 µg/mL. In addition, the crude extract was also able to inhibit the expression of virulence factors involved in biofilm formation: exopolysaccharide (72.21%) and alginate (72.50%). Secretion of cell-lytic enzymes was also found to be reduced: chitinase by 79.73% and elastase by 74.30%. 3-Isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione identified from GC-MS analysis, displayed favorable molecular interactions with P. aeruginosa transcriptional regulators, LasR and RhlR with good docking scores of - 6.873 kJ/mol and - 6.257 kJ/mol, respectively. The study thus reveals the potential use of P. tersa for discovering drugs against infectious pathogens.

5.
Braz J Microbiol ; 51(2): 467-487, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32086747

RESUMO

Pseudomonas aeruginosa is the second most emerging multidrug-resistant, opportunistic pathogen after Acinetobacter baumannii that poses a threat in nursing homes, hospitals, and patients who need devices such as ventilators and blood catheters. Its ability to form quorum sensing-regulated virulence factors and biofilm makes it more resistant to top most therapeutic agents such as carbapenems and next-generation antibiotics. In the current study, we studied the quorum quenching potential of secondary metabolites of Mycoleptodiscus indicus PUTY1 strain. In vitro observation showed a mitigation in virulence factors such as rhamnolipids, protease, elastase pyocyanin, exopolysaccharides, and hydrogen cyanide gas. Furthermore, a significant reduction in the motility such as swimming, swarming, twitching, and inhibition in biofilm formation by Pseudomonas aeruginosa PAO1 was observed. Results of in vitro studies were further confirmed by in silico studies through docking and molecular dynamic simulation of GC-MS-detected compounds of Mycoleptodiscus indicus employing LasR and RhlR proteins. Both in vitro and in silico observations indicate a new alternative approach for combating virulence of Pseudomonas aeruginosa by targeting its protein receptors LasR and RhlR. Graphical abstract.


Assuntos
Ascomicetos/química , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Pseudomonas aeruginosa/fisiologia , Metabolismo Secundário
6.
J Microbiol Biotechnol ; 30(4): 571-582, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31986566

RESUMO

Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 µg/ml. Sub-MIC concentrations (250 and 500 µg/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 µg/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 µg/ml) and 4-HPA (62.5 µg/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Pestalotiopsis/metabolismo , Percepção de Quorum/efeitos dos fármacos , Fatores de Virulência/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética
7.
Microb Pathog ; 138: 103811, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31644930

RESUMO

The bacterial cell communication also termed as Quorum sensing (QS) system was involved in the expression of several virulence traits during Pseudomonas infection. The attenuating of this bacterial cell communication system is an attractive approach for the management of bacterial infections without the complication of resistance development. In this respect, the marine environment has gained significant attention due to its biodiversity and as a source of novel bioactive compounds. The present study aimed to screening effective QS inhibitors from marine associated fungal species for QS inhibitors. Twelve morphologically distinct fungal isolates were isolated from the wood of Avicennia marina from marine ecosystem. The anti-QS potential of fungal crude extract from was investigated in biosensor strain and test bacterium, Chromobacterium violaceum and Pseudomonas aeruginosa PAO1, respectively. Promising anti-QS activity was observed in the crude extract of one of the fungal isolate and identified by molecular characterization using internal transcribed spacer (ITS) region as Blastobotrys parvus PPR3. The anti-virulence and antibiofilm effects of ethyl acetate fractions from PPR3 against P. aeruginosa PAO1 were evaluated. The fungal metabolites responsible for the anti-QS activity of fungal crude extract was identified using gas chromatography-mass spectrometry (GC-MS). Furthermore, molecular docking studies were performed to understand the interaction of bioactive compounds with as receptors of P. aeruginosa PAO1. The crude extract of PPR3 showed reduction in different virulence traits of P. aeruginosa PAO1 such as production of pyocyanin, elastase, protease, chitinase, swimming and swarming motility, biofilm formation, exopolysaccharide production and alginate production at different sub-MIC concentrations. Interaction of bioactive metabolites with LasR and RhlR receptors of P. aeruginosa PAO1 was reported. The findings of the present study suggested that metabolites of B. parvus PPR3 interfere with QS system of P. aeruginosa PAO1 and alters the production of virulence factors.


Assuntos
Antibiose , Organismos Aquáticos , Biofilmes , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Saccharomycetales/fisiologia , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Filogenia , Percepção de Quorum/efeitos dos fármacos , Saccharomycetales/classificação , Saccharomycetales/isolamento & purificação , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos
8.
Biofouling ; 34(4): 410-425, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29745728

RESUMO

Pseudomonas aeruginosa is an opportunistic nosocomial pathogen causing the majority of acute and persistent infections in human beings. The ability to form biofilm adds a new dimension to its resistance to conventional therapeutic agents. In the present study, down-regulation of quorum sensing regulated virulence and biofilm development resulting from exposure to Aspergillus ochraceopetaliformis SSP13 extract was investigated. The in vitro results inferred impairment in the production of LasA protease, LasB elastase, chitinase, pyocyanin, exopolysaccharides and rhamnolipids. In addition, motility and biofilm formation by P. aeruginosa PAO1 was significantly altered. The in vitro results were further supported by molecular docking studies of the metabolites obtained from GC-MS analysis depicting the quorum sensing attenuation by targeting the receptor proteins LasR and RhlR. The in vitro and in silico studies suggested new avenues for the development of bioactive metabolites from A. ochraceopetaliformis SSP13 extract as potential anti-infective agents.


Assuntos
Antibacterianos/farmacologia , Aspergillus/química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Virulência , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Quitinases/genética , Regulação Bacteriana da Expressão Gênica , Glicolipídeos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Piocianina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA