Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Cardiovasc Med ; 9: 751499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204580

RESUMO

Pirfenidone is a small drug with marked antifibrotic activity approved for the treatment of Idiopathic pulmonary fibrosis. Recently, its peculiar pharmacological profile has attracted attention for its potential therapeutic benefit for extra-pulmonary disorders characterized by pathological fibrosis, such as kidney, liver, and cardiac failure. A major pitfall of pirfenidone is the lack of consistent understanding of its mechanism of action, regardless of the target. In addition to the increasing attention to the role of inflammation and its mediators in several processes, a better knowledge of the variety of fibroblasts' population, of signals controlling their activation and trans-differentiation, and of crosstalk with other cell resident and non-resident cell types is needed for prevention, treatment and possibly reverse of fibrosis. This review will focus on pirfenidone's pharmacological profile and its effects on cardiac fibroblasts.

2.
Front Physiol ; 12: 692496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539428

RESUMO

Current techniques for fast characterization of cardiac electrophysiology employ optical technologies to control and monitor action potential features of single cells or cellular monolayers placed in multiwell plates. High-speed investigation capacities are commonly achieved by serially analyzing well after well employing fully automated fluorescence microscopes. Here, we describe an alternative cost-effective optical approach (MULTIPLE) that exploits high-power LED arrays to globally illuminate a culture plate and an sCMOS sensor for parallel detection of the fluorescence coming from multiple wells. MULTIPLE combines optical detection of action potentials using a red-shifted voltage-sensitive fluorescent dye (di-4-ANBDQPQ) with optical stimulation, employing optogenetic actuators, to ensure excitation of cardiomyocytes at constant rates. MULTIPLE was first characterized in terms of interwell uniformity of the illumination intensity and optical detection performance. Then, it was applied for probing action potential features in HL-1 cells (i.e., mouse atrial myocyte-like cells) stably expressing the blue light-activatable cation channel CheRiff. Under proper stimulation conditions, we were able to accurately measure action potential dynamics across a 24-well plate with variability across the whole plate of the order of 10%. The capability of MULTIPLE to detect action potential changes across a 24-well plate was demonstrated employing the selective K v 11.1 channel blocker (E-4031), in a dose titration experiment. Finally, action potential recordings were performed in spontaneous beating human induced pluripotent stem cell derived cardiomyocytes following pharmacological manipulation of their beating frequency. We believe that the simplicity of the presented optical scheme represents a valid complement to sophisticated and expensive state-of-the-art optical systems for high-throughput cardiac electrophysiological investigations.

3.
Prog Biophys Mol Biol ; 166: 173-181, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303730

RESUMO

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, expressed in a variety of cell types and in all tissues, control excitation and rhythm. Since their discovery in neurons and cardiac pacemaker cells, they attracted the attention of medicinal chemistry and pharmacology as novel targets to shape (patho)physiological mechanisms. To date, ivabradine represents the first-in-class drug as specific bradycardic agent in cardiac diseases; however, new applications are emerging in parallel with the demonstration of the involvement of different HCN isoforms in central and peripheral nervous system. Hence, the possibility to target specific isoforms represents an attractive development in this field; indeed, HCN1, HCN2 or HCN4 specific blockers have shown promising features in vitro and in vivo, with remarkable pharmacological differences likely depending on the diverse functional role and tissue distribution. Here, we show a recently developed compound with high potency as HCN2-HCN4 blocker; because of its unique profile, this compound may deserve further investigation.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ivabradina , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
4.
Pharmacol Res ; 168: 105581, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781873

RESUMO

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Assuntos
Encefalopatias/terapia , Encéfalo/efeitos dos fármacos , COVID-19/terapia , Cardiopatias/terapia , Coração/efeitos dos fármacos , Corticosteroides/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antivirais/administração & dosagem , Encéfalo/imunologia , Encéfalo/metabolismo , Encefalopatias/imunologia , Encefalopatias/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Cuidados Críticos/métodos , Estado Terminal/terapia , Suplementos Nutricionais , Alimento Funcional , Cardiopatias/imunologia , Cardiopatias/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/imunologia , Microvasos/metabolismo , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/terapia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo
5.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623362

RESUMO

Skeletal muscle regeneration is ensured by satellite cells (SC), which upon activation undergo self-renewal and myogenesis. The correct sequence of healing events may be offset by inflammatory and/or fibrotic factors able to promote fibrosis and consequent muscle wasting. Angiotensin-II (Ang) is an effector peptide of the renin angiotensin system (RAS), of which the direct role in human SCs (hSCs) is still controversial. Based on the hypertrophic and fibrogenic effects of Ang via transient receptor potential canonical (TRPC) channels in cardiac and renal tissues, we hypothesized a similar axis in hSCs. Toward this aim, we demonstrated that hSCs respond to acute Ang stimulation, dose-dependently enhancing p-mTOR, p-AKT, p-ERK1/2 and p-P38. Additionally, sub-acute Ang conditioning increased cell size and promoted trans-differentiation into myofibroblasts. To provide a mechanistic hypothesis on TRPC channel involvement in the processes, we proved that TRPC channels mediate a basal calcium entry into hSCs that is stimulated by acute Ang and strongly amplified by sub-chronic Ang conditioning. Altogether, these findings demonstrate that Ang induces a fate shift of hSCs into myofibroblasts and provide a basis to support a benefit of RAS and TRPC channel blockade to oppose muscle fibrosis.


Assuntos
Angiotensina II/metabolismo , Transdiferenciação Celular , Miofibroblastos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Angiotensina II/farmacologia , Sinalização do Cálcio , Sobrevivência Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Humanos , Hipertrofia , Imagem Molecular , Mioblastos/citologia , Mioblastos/metabolismo , Miofibroblastos/citologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382622

RESUMO

Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are the most promising human source with preserved genetic background of healthy individuals or patients. This study aimed to establish a systematic procedure for exploring development of hiPSC-CM functional output to predict genetic cardiomyopathy outcomes and identify molecular targets for therapy. Biomimetic substrates with microtopography and physiological stiffness can overcome the immaturity of hiPSC-CM function. We have developed a custom-made apparatus for simultaneous optical measurements of hiPSC-CM action potential and calcium transients to correlate these parameters at specific time points (day 60, 75 and 90 post differentiation) and under inotropic interventions. In later-stages, single hiPSC-CMs revealed prolonged action potential duration, increased calcium transient amplitude and shorter duration that closely resembled those of human adult cardiomyocytes from fresh ventricular tissue of patients. Thus, the major contribution of sarcoplasmic reticulum and positive inotropic response to ß-adrenergic stimulation are time-dependent events underlying excitation contraction coupling (ECC) maturation of hiPSC-CM; biomimetic substrates can promote calcium-handling regulation towards adult-like kinetics. Simultaneous optical recordings of long-term cultured hiPSC-CMs on biomimetic substrates favor high-throughput electrophysiological analysis aimed at testing (mechanistic hypothesis on) disease progression and pharmacological interventions in patient-derived hiPSC-CMs.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Cálcio/metabolismo , Cardiomiopatias/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Biomimética , Cardiomiopatias/genética , Cardiomiopatias/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Acoplamento Excitação-Contração/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Especificidade por Substrato
8.
ACS Med Chem Lett ; 10(4): 584-589, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996800

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are membrane proteins encoded by four genes (HCN1-4) and widely distributed in the central and peripheral nervous system and in the heart. HCN channels are involved in several physiological functions, including the generation of rhythmic activity, and are considered important drug targets if compounds with isoform selectivity are developed. At present, however, few compounds are known, which are able to discriminate among HCN channel isoforms. The inclusion of the three-methylene chain of zatebradine into a cyclohexane ring gave a compound (3a) showing a 5-fold preference for HCN4 channels, and ability to selectively modulate Ih in different tissues. Compound 3a has been tested for its ability to reduce Ih and to interact with other ion channels in the heart and the central nervous system. Its preference for HCN4 channels makes this compound useful to elucidate the contribution of this isoform in the physiological and pathological processes involving hyperpolarization-activated current.

9.
Front Pharmacol ; 10: 1420, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31956307

RESUMO

Systemic inflammation correlates with an increased risk of atrial fibrillation (AF) and thrombogenesis. Systemic inflammation alters vessel permeability, allowing inflammatory and immune cell migration toward target organs, including the heart. Among inflammatory cells infiltrating the atria, macrophages and mast cell have recently attracted the interest of basic researchers due to the pathogenic mechanisms triggered by their activation. This chemotactic invasion is likely implicated in short- and long-term changes in cardiac cell-to-cell communication and in triggering fibrous tissue accumulation in the atrial myocardium and electrophysiological re-arrangements of atrial cardiomyocytes, thus favoring the onset and progression of AF. Serine proteases are a large and heterogeneous class of proteases involved in several processes that are important for cardiac function and are involved in cardiac diseases, such as (i) coagulation, (ii) fibrinolysis, (iii) extracellular matrix degradation, (iv) activation of receptors (i.e., protease-activated receptors [PPARs]), and (v) modulation of the activity of endogenous signals. The recognition of serine proteases substrates and their involvement in inflammatory/profibrotic mechanisms allowed the identification of novel cardio-protective mechanisms for commonly used drugs that inhibit serine proteases. The aim of this review is to summarize knowledge on the role of inflammation and fibrosis as determinants of AF. Moreover, we will recapitulate current findings on the role of serine proteases in the pathogenesis of AF and the possible beneficial effects of drugs inhibiting serine proteases in reducing the risk of AF through decrease of cardiac inflammation and fibrosis. These drugs include thrombin and factor Xa inhibitors (used as oral anticoagulants), dipeptidyl-peptidase 4 (DPP4) inhibitors, used for type-2 diabetes, as well as novel experimental inhibitors of mast cell chymases.

10.
Oxid Med Cell Longev ; 2018: 6816508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538804

RESUMO

The early phases of embryonic development and cancer share similar strategies to improve their survival in an inhospitable environment: both proliferate in a hypoxic and catecholamine-rich context, increasing aerobic glycolysis. Recent studies show that ß3-adrenergic receptor (ß3-AR) is involved in tumor progression, playing an important role in metastasis. Among ß-adrenergic receptors, ß3-AR is the last identified member of this family, and it is involved in cancer cell survival and induction of stromal reactivity in the tumor microenvironment. ß3-AR is well known as a strong activator of uncoupling protein 1 (UCP1) in brown fat tissue. Interestingly, ß3-AR is strongly expressed in early embryo development and in many cancer tissues. Induction of uncoupling protein 2 (UCP2) has been related to cancer metabolic switch, leading to accelerated glycolysis and reduced mitochondrial activity. In this study, for the first time, we demonstrate that ß3-AR is able to promote this metabolic shift in both cancer and embryonic stem cells, inducing specific glycolytic cytoplasmic enzymes and a sort of mitochondrial dormancy through the induction of UCP2. The ß3-AR/UCP2 axis induces a strong reduction of mitochondrial activity by reducing ATP synthesis and mitochondrial reactive oxygen species (mtROS) content. These effects are reverted by SR59230A, the specific ß3-AR antagonist, causing an increase in mtROS. The increased level of mtROS is neutralized by a strong antioxidant activity in embryonic stem cells, but not in cancer stem cells, where it causes a dramatic reduction in tumor cell viability. These results lead to the possibility of a selective antitumor therapeutic use of SR59230A. Notably, we demonstrate the presence of ß3-AR within the mitochondrial membrane in both cell lines, leading to the control of mitochondrial dormancy.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Células-Tronco Embrionárias/metabolismo , Melanoma/metabolismo , Mitocôndrias/metabolismo , Propanolaminas/farmacologia , Animais , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Humanos , Melanoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Receptores Adrenérgicos beta 3/metabolismo
11.
Front Pharmacol ; 9: 1252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467478

RESUMO

A prominent role of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels has been suggested based on their expression and (dys)function in dorsal root ganglion (DRG) neurons, being likely involved in peripheral nociception. Using HCN blockers as antinociceptive drugs is prevented by the widespread distribution of these channels. However, tissue-specific expression of HCN isoforms varies significantly, HCN1 and HCN2 being considered as major players in DRG excitability. We characterized the pharmacological effect of a novel compound, MEL55A, able to block selectively HCN1/HCN2 isoforms, on DRG neuron excitability in-vitro and for its antiallodynic properties in-vivo. HEK293 cells expressing HCN1, HCN2, or HCN4 isoforms were used to verify drug selectivity. The pharmacological profile of MEL55A was tested on mouse DRG neurons by patch-clamp recordings, and in-vivo in oxaliplatin-induced neuropathy by means of thermal hypersensitivity. Results were compared to the non-isoform-selective drug, ivabradine. MEL55A showed a marked preference toward HCN1 and HCN2 isoforms expressed in HEK293, with respect to HCN4. In cultured DRG, MEL55A reduced I h amplitude, both in basic conditions and after stimulation by forskolin, and cell excitability, its effect being quantitatively similar to that observed with ivabradine. MEL55A was able to relieve chemotherapy-induced neuropathic pain. In conclusion, selective blockade of HCN1/HCN2 channels, over HCN4 isoform, was able to modulate electrophysiological properties of DRG neurons similarly to that reported for classical I h blockers, ivabradine, resulting in a pain-relieving activity. The availability of small molecules with selectivity toward HCN channel isoforms involved in nociception might represent a safe and effective strategy against chronic pain.

12.
Can J Physiol Pharmacol ; 96(10): 977-984, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29969572

RESUMO

The hyperpolarization-activated cyclic-nucleotide-gated (HCN) proteins are voltage-dependent ion channels, conducting both Na+ and K+, blocked by millimolar concentrations of extracellular Cs+ and modulated by cyclic nucleotides (mainly cAMP) that contribute crucially to the pacemaker activity in cardiac nodal cells and subsidiary pacemakers. Over the last decades, much attention has focused on HCN current, If, in non-pacemaker cardiac cells and its potential role in triggering arrhythmias. In fact, in addition to pacemakers, HCN current is constitutively present in the human atria and has long been proposed to sustain atrial arrhythmias associated to different cardiac pathologies or triggered by various modulatory signals (catecholamines, serotonin, natriuretic peptides). An atypical If occurs in diseased ventricular cardiomyocytes, its amplitude being linearly related to the severity of cardiac hypertrophy. The properties of atrial and ventricular If and its modulation by pharmacological interventions has been object of intense study, including the synthesis and characterization of new compounds able to block preferentially HCN1, HCN2, or HCN4 isoforms. Altogether, clues emerge for opportunities of future pharmacological strategies exploiting the unique properties of this channel family: the prevalence of different HCN subtypes in organs and tissues, the possibility to target HCN gain- or loss-of-function associated with disease, the feasibility of novel isoform-selective drugs, as well as the discovery of HCN-mediated effects for old medicines.


Assuntos
Coração/efeitos dos fármacos , Coração/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Remodelação Ventricular/efeitos dos fármacos
13.
Pharmacol Rev ; 69(4): 354-395, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28878030

RESUMO

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Animais , Biofísica , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Ligantes , Terapia de Alvo Molecular , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/farmacologia , Relação Estrutura-Atividade
14.
Stem Cells Int ; 2016: 2868323, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27840646

RESUMO

Introduction and Aim. Nitric oxide (NO) can trigger cardiac differentiation of embryonic stem cells (ESCs), indicating a cardiogenic function of the NO synthetizing enzyme(s) (NOS). However, the involvement of the NO/NOS downstream effectors soluble guanylyl cyclase (sGC) and cGMP activated protein kinase I (PKG-I) is less defined. Therefore, we assess the involvement of the entire NO/NOS/sGC/PKG-I pathway during cardiac differentiation process. Methods. Mouse ESCs were differentiated toward cardiac lineages by hanging drop methodology for 21 days. NOS/sGC/PKG-I pathway was studied quantifying genes, proteins, enzymatic activities, and effects of inhibition during differentiation. Percentages of beating embryoid bodies (mEBs) were evaluated as an index of cardiogenesis. Results and Discussion. Genes and protein expression of enzymes were increased during differentiation with distinctive kinetics and proteins possessed their enzymatic functions. Exogenous administered NO accelerated whereas the blockade of PKG-I strongly slowed cardiogenesis. sGC inhibition was effective only at early stages and NOS blockade ineffective. Of NOS/sGC/PKG-I pathway, PKG-I seems to play the prominent role in cardiac maturation. Conclusion. We concluded that exogenous administered NO and other pharmacological strategies able to increase the activity of PKG-I provide new tools to investigate and promote differentiation of cardiogenic precursors.

15.
Biophys J ; 111(9): 2024-2038, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806283

RESUMO

Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.


Assuntos
Amiloide/química , Amiloide/metabolismo , Fenômenos Eletrofisiológicos , Miócitos Cardíacos/metabolismo , Pré-Albumina/química , Pré-Albumina/metabolismo , Agregados Proteicos , Animais , Cálcio/metabolismo , Citoplasma/metabolismo , Ventrículos do Coração/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
16.
Curr Top Med Chem ; 16(16): 1764-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26975509

RESUMO

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Moduladores de Transporte de Membrana/farmacologia , Animais , Desenho de Fármacos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Moduladores de Transporte de Membrana/síntese química , Moduladores de Transporte de Membrana/química , Estrutura Molecular
17.
Clin Cases Miner Bone Metab ; 12(2): 135-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26604938

RESUMO

Sarcopenia represents a major health problem highly prevalent in elderly and age-related chronic diseases. Current pharmacological strategies available to prevent and reverse sarcopenia are largely unsatisfactory thus raising the need to identify novel targets for pharmacological intervention and possibly more effective and safe drugs. This review highlights the current knowledge of the potential benefits of renin-angiotensin system blockade in sarcopenia and discuss the main mechanisms underlying the effects.

18.
Curr Drug Targets ; 16(8): 868-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26028050

RESUMO

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play an important role in the generation of pacemaker activity of cardiac sinoatrial node cells and immature cardiomyocytes. HCN channels are also present in adult atrial and ventricular cardiomyocytes, where the physiological role is currently under investigation. In different cardiac pathologies, dysfunctional HCN channels have been suggested to be a direct cause of rhythm disorders. While loss-of-function mutations of HCN channels are associated with sinus bradycardia, HCN channel gain-of-function in atrial fibrillation, ventricular hypertrophy and failure might help enhance ectopic electrical activity and promote arrhythmogenesis. Blockade of HCN channels with ivabradine, a selective bradycardic agent currently available for clinical use, improves cardiac performance and counteracts functional remodeling in experimental hypertrophy. Accordingly, ivabradine ameliorates clinical outcome in patients with chronic heart failure. Novel compounds with enhanced selectivity for cardiac HCN channel isoforms are being studied as potential candidates for new drug development.


Assuntos
Cardiopatias/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Cardiopatias/fisiopatologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Ivabradina , Mutação , Miócitos Cardíacos/efeitos dos fármacos
19.
Curr Drug Targets ; 16(8): 895-903, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738298

RESUMO

Reactive oxygen species and reactive nitrogen species are produced endogenously by cardiomyocytes and are fundamental signaling molecules that regulate cellular function. Production of ROS and RNS is finely tuned to maintain proper myocardial function, but is altered in many pathophysiological conditions, therefore contributing to worsening myocardial dysfunction and ultimately heart failure. Indeed, an excess of ROS and RNS is central in many pathways leading to cardiac hypertrophy and failure, and the correct regulation of the nitroso-redox balance is fundamental for the function of the main components of the EC-coupling machinery. Broad antioxidant therapies have been proposed to improve myocardial function, but these therapies blunt even physiological ROS and RNS signaling, bringing limited, if any, beneficial effect. On the other hand, more targeted interventions on specific sources or pathways may produce promising results.


Assuntos
Miócitos Cardíacos/fisiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Humanos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
20.
Stem Cells ; 33(5): 1434-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645121

RESUMO

Congenital heart defects (CHD) occur in approximately 50% of patients with Down syndrome (DS); the mechanisms for this occurrence however remain unknown. In order to understand how these defects evolve in early development in DS, we focused on the earliest stages of cardiogenesis to ascertain perturbations in development leading to CHD. Using a trisomy 21 (T21) sibling human embryonic stem cell (hESC) model of DS, we show that T21-hESC display many significant differences in expression of genes and cell populations associated with mesodermal, and more notably, secondary heart field (SHF) development, in particular a reduced number of ISL1(+) progenitor cells. Furthermore, we provide evidence for two candidate genes located on chromosome 21, ETS2 and ERG, whose overexpression during cardiac commitment likely account for the disruption of SHF development, as revealed by downregulation or overexpression experiments. Additionally, we uncover an abnormal electrophysiological phenotype in functional T21 cardiomyocytes, a result further supported by mRNA expression data acquired using RNA-Seq. These data, in combination, revealed a cardiomyocyte-specific phenotype in T21 cardiomyocytes, likely due to the overexpression of genes such as RYR2, NCX, and L-type Ca(2+) channel. These results contribute to the understanding of the mechanisms involved in the development of CHD. Stem Cells 2015;33:1434-1446.


Assuntos
Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Coração/embriologia , Coração/fisiopatologia , Células-Tronco Embrionárias Humanas/metabolismo , Miócitos Cardíacos/patologia , Potenciais de Ação , Diferenciação Celular , Linhagem Celular , Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Cardiopatias Congênitas/genética , Humanos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA