RESUMO
With the emergence of health data warehouses and major initiatives to collect and analyze multi-modal and multisource data, data organization becomes central. In the PACIFIC-PRESERVED (PhenomApping, ClassIFication, and Innovation for Cardiac Dysfunction - Heart Failure with PRESERVED LVEF Study, NCT04189029) study, a data driven research project aiming at redefining and profiling the Heart Failure with preserved Ejection Fraction (HFpEF), an ontology was developed by different data experts in cardiology to enable better data management in a complex study context (multisource, multiformat, multimodality, multipartners). The PACIFIC ontology provides a cardiac data management framework for the phenomapping of patients. It was built upon the BMS-LM (Biomedical Study -Lifecycle Management) core ontology and framework, proposed in a previous work to ensure data organization and provenance throughout the study lifecycle (specification, acquisition, analysis, publication). The BMS-LM design pattern was applied to the PACIFIC multisource variables. In addition, data was structured using a subset of MeSH headings for diseases, technical procedures, or biological processes, and using the Uberon ontology anatomical entities. A total of 1372 variables were organized and enriched with annotations and description from existing ontologies and taxonomies such as LOINC to enable later semantic interoperability. Both, data structuring using the BMS-LM framework, and its mapping with published standards, foster interoperability of multimodal cardiac phenomapping datasets.