Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36832156

RESUMO

One of the top causes of mortality in people globally is a brain tumor. Today, biopsy is regarded as the cornerstone of cancer diagnosis. However, it faces difficulties, including low sensitivity, hazards during biopsy treatment, and a protracted waiting period for findings. In this context, developing non-invasive and computational methods for identifying and treating brain cancers is crucial. The classification of tumors obtained from an MRI is crucial for making a variety of medical diagnoses. However, MRI analysis typically requires much time. The primary challenge is that the tissues of the brain are comparable. Numerous scientists have created new techniques for identifying and categorizing cancers. However, due to their limitations, the majority of them eventually fail. In that context, this work presents a novel way of classifying multiple types of brain tumors. This work also introduces a segmentation algorithm known as Canny Mayfly. Enhanced chimpanzee optimization algorithm (EChOA) is used to select the features by minimizing the dimension of the retrieved features. ResNet-152 and the softmax classifier are then used to perform the feature classification process. Python is used to carry out the proposed method on the Figshare dataset. The accuracy, specificity, and sensitivity of the proposed cancer classification system are just a few of the characteristics that are used to evaluate its overall performance. According to the final evaluation results, our proposed strategy outperformed, with an accuracy of 98.85%.

2.
Comput Math Methods Med ; 2022: 4380901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277002

RESUMO

The classification of the brain tumor image is playing a vital role in the medical image domain, and it directly assists the clinicians to understand the severity and to take an appropriate solution. The magnetic resonance imaging tool is used to analyze the brain tissues and to examine the different portion of brain circumstance. We propose the convolutional neural network database learning along with neighboring network limitation (CDBLNL) technique for brain tumor image classification in medical image processing domain. The proposed system architecture is constructed with multilayer-based metadata learning, and they have integrated with CNN layer to deliver the accurate information. The metadata-based vector encoding is used, and the type of coding estimation for extra dimension is known as sparse. In order to maintain the supervised data in terms of geometric format, the atoms of neighboring limitation are built based on a well-structured k-neighbored network. The resultant of the proposed system is considerably strong and subjective for classification. The proposed system used two different datasets, such as BRATS and REMBRANDT, and the proposed brain MRI classification technique outcome is more efficient than the other existing techniques.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
3.
Concurr Comput ; 34(23): e7211, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35945987

RESUMO

A novel corona virus (COVID-19) has materialized as the respiratory syndrome in recent decades. Chest computed tomography scanning is the significant technology for monitoring and predicting COVID-19. To predict the patients of COVID-19 at early stage poses an open challenge in the research community. Therefore, an effective prediction mechanism named Jaya-tunicate swarm algorithm driven generative adversarial network (Jaya-TSA with GAN) is proposed in this research to find patients of COVID-19 infections. The developed Jaya-TSA is the incorporation of Jaya algorithm with tunicate swarm algorithm (TSA). However, lungs lobs are segmented using Bayesian fuzzy clustering, which effectively find the boundary regions of lung lobes. Based on the extracted features, the process of COVID-19 prediction is accomplished using GAN. The optimal solution is obtained by training GAN using proposed Jaya-TSA with respect to fitness measure. The dimensionality of features is reduced by extracting the optimal features, which enable to increase the speed of training process. Moreover, the developed Jaya-TSA based GAN attained outstanding effectiveness by considering the factors, like, specificity, accuracy, and sensitivity that captured the importance as 0.8857, 0.8727, and 0.85 by varying training data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA