Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Immunol ; 25(6): 957-968, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811815

RESUMO

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke and other neurological disorders. Here we demonstrate that both mouse and human bone marrow neutrophils, when polarized with a combination of recombinant interleukin-4 (IL-4) and granulocyte colony-stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF-polarized bone marrow neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.


Assuntos
Axônios , Fator Estimulador de Colônias de Granulócitos , Interleucina-4 , Camundongos Endogâmicos C57BL , Regeneração Nervosa , Neutrófilos , Animais , Neutrófilos/imunologia , Regeneração Nervosa/imunologia , Camundongos , Humanos , Axônios/metabolismo , Axônios/fisiologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Interleucina-4/metabolismo , Ativação de Neutrófilo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Transferência Adotiva , Citocinas/metabolismo , Células Cultivadas
2.
Cell Rep Med ; 5(5): 101525, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38663398

RESUMO

Spinal cord injury (SCI) increases the risk of cardiometabolic disorders, including hypertension, dyslipidemia, and insulin resistance. Not only does SCI lead to pathological expansion of adipose tissue, but it also leads to ectopic lipid accumulation in organs integral to glucose and insulin metabolism. The pathophysiological changes that underlie adipose tissue dysfunction after SCI are unknown. Here, we find that SCI exacerbates lipolysis in epididymal white adipose tissue (eWAT). Whereas expression of the α2δ1 subunit of voltage-gated calcium channels increases in calcitonin gene-related peptide-positive dorsal root ganglia neurons that project to eWAT, conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Furthermore, α2δ1 pharmacological blockade through systemic administration of gabapentin also normalizes eWAT lipolysis after SCI, preventing ectopic lipid accumulation in the liver. Thus, our study provides insight into molecular causes of maladaptive sensory processing in eWAT, facilitating the development of strategies to reduce metabolic and cardiovascular complications after SCI.


Assuntos
Tecido Adiposo Branco , Homeostase , Lipólise , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Tecido Adiposo Branco/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética
3.
Nat Neurosci ; 27(4): 656-665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378993

RESUMO

Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.


Assuntos
Astrócitos , Doenças Neurodegenerativas , Camundongos , Animais , Astrócitos/metabolismo , Doenças Neurodegenerativas/metabolismo , Envelhecimento/metabolismo , Sistema Nervoso Central
4.
J Trauma Acute Care Surg ; 96(4): 557-565, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962211

RESUMO

BACKGROUND: Pneumonia remains a common complication in trauma patients. Sirtuin 1 (SIRT1) is an anti-inflammatory NAD + -dependent deacetylase that has been shown to reduce the severity of ARDS in polymicrobial sepsis. The impact of SIRT1 in acute pneumonia, however, remains unknown. We hypothesized that SIRT1 deletion in pneumonia would worsen the inflammatory response and clinical severity, and that increased SIRT1 expression would be protective. METHODS: Ten- to 14-week-old male and female SIRT1 knockout (S1KO) mice, SIRT1 overexpressor (S1OE) mice, and their wildtype (WT) littermates underwent intra-tracheal inoculation with Pseudomonas aeruginosa . Rectal temperature was recorded, SIRT1 lung protein was quantified by western blotting, Sirt1 mRNA was measured by qPCR, and lung leukocyte subpopulations were analyzed by flow cytometry. Data were analyzed by one-way ANOVA using Prism software. RESULTS: Pneumonia created a functional SIRT1 knockdown in the lungs of WT mice by 4 hours, resulting in comparable SIRT1 levels and temperatures to the S1KO mice by 12 hours. Pneumonia also partially reduced SIRT1expression in S1OE mice, but S1OE mice still had improved thermoregulation 12 hours after pneumonia. In all groups, Sirt1 mRNA expression was not affected by infection. Sirtuin 1 deletion was associated with decreased neutrophil infiltration in the lung, as well as a shift toward a more immature neutrophil phenotype. SIRT1 deletion was also associated with decreased myeloperoxidase-positive neutrophils in the lungs following pneumonia, indicating decreased neutrophil activity. S1OE mice had no change in lung leukocyte subpopulations when compared to WT. CONCLUSION: Pneumonia creates a functional SIRT1 knockdown in mice. SIRT1 deletion altered the early inflammatory cell response to pneumonia, resulting in a neutrophil response that would be less favorable for bacterial clearance. Despite overexpression of SIRT1, S1OE mice also developed low SIRT1 levels and exhibited only minimal improvement. This suggests increasing SIRT1 transcription is not sufficient to overcome pneumonia-induced downregulation and has implications for future treatment options. Targeting SIRT1 through increasing protein stability may promote a more efficient inflammatory cell response to pneumonia, thereby preventing subsequent lung injury.


Assuntos
Neutrófilos , Pneumonia , Humanos , Masculino , Camundongos , Feminino , Animais , Neutrófilos/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação para Baixo , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Res Sq ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37961609

RESUMO

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration, and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke, and other neurological disorders. Here we demonstrate that both mouse and human bone marrow (BM) neutrophils, when polarized with a combination of recombinant interleukin (IL)-4 and granulocyte-colony stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF polarized BM neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.

6.
Cell Rep ; 42(3): 112197, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36871221

RESUMO

Recent studies have shown the importance of the dynamic tumor microenvironment (TME) in high-grade gliomas (HGGs). In particular, myeloid cells are known to mediate immunosuppression in glioma; however, it is still unclear if myeloid cells play a role in low-grade glioma (LGG) malignant progression. Here, we investigate the cellular heterogeneity of the TME using single-cell RNA sequencing in a murine glioma model that recapitulates the malignant progression of LGG to HGG. LGGs show increased infiltrating CD4+ and CD8+ T cells and natural killer (NK) cells in the TME, whereas HGGs abrogate this infiltration. Our study identifies distinct macrophage clusters in the TME that show an immune-activated phenotype in LGG but then evolve to an immunosuppressive state in HGG. We identify CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Targeting these intra-tumoral macrophages in the LGG stage may attenuate their immunosuppressive properties and impair malignant progression.


Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Glioma/genética , Glioma/patologia , Macrófagos/patologia , Análise de Sequência de RNA , Microambiente Tumoral
7.
J Neuroimmunol ; 375: 578016, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708633

RESUMO

Experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of Th17 cells, typically presents with ascending paralysis and inflammatory demyelination of the spinal cord. Brain white matter is relatively spared. Here we show that treatment of Th17 transfer recipients with a highly selective inhibitor to the TAM family of tyrosine kinase receptors results in ataxia associated with a shift of the inflammatory infiltrate to the hindbrain parenchyma. During homeostasis and preclinical EAE, hindbrain microglia express high levels of the TAM receptor Mer. Our data suggest that constitutive TAM receptor signaling in hindbrain microglia confers region-specific protection against Th17 mediated EAE.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Camundongos , Medula Espinal/patologia , Microglia/patologia , Receptores Proteína Tirosina Quinases , Camundongos Endogâmicos C57BL
8.
Front Endocrinol (Lausanne) ; 13: 864925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795142

RESUMO

Peripheral nerves allow a bidirectional communication between brain and adipose tissues, and many studies have clearly demonstrated that a loss of the adipose nerve supply results in tissue dysfunction and metabolic dysregulation. Neuroimmune cells closely associate with nerves in many tissues, including subcutaneous white adipose tissue (scWAT). However, in scWAT, their functions beyond degrading norepinephrine in an obese state remain largely unexplored. We previously reported that a myeloid-lineage knockout (KO) of brain-derived neurotrophic factor (BDNF) resulted in decreased innervation of scWAT, accompanied by an inability to brown scWAT after cold stimulation, and increased adiposity after a high-fat diet. These data underscored that adipose tissue neuroimmune cells support the peripheral nerve supply to adipose and impact the tissue's metabolic functions. We also reported that a subset of myeloid-lineage monocyte/macrophages (Ly6c+CCR2+Cx3cr1+) is recruited to scWAT in response to cold, a process known to increase neurite density in adipose and promote metabolically healthy processes. These cold-induced neuroimmune cells (CINCs) also expressed BDNF. Here we performed RNAseq on CINCs from cold-exposed and room temperature-housed mice, which revealed a striking and coordinated differential expression of numerous genes involved in neuronal function, including neurotrophin signaling and axonal guidance, further supporting that CINCs fulfill a nerve-supporting role in adipose. The increased expression of leukocyte transendothelial migration genes in cold-stimulated CINCs also confirms prior evidence that they are recruited to scWAT and are not tissue resident. We now provide whole-depot imaging of scWAT from LysM-BDNF KO mice, revealing a striking reduction of innervation across the depot fitting with their reduced energy expenditure phenotype. By contrast, Cx3cr1-BDNF KO mice (a macrophage subset of LysM+ cells) exhibited increased thermogenesis and energy expenditure, with compensatory increased food intake and no change in adiposity or body weight. While these KO mice also exhibit a significantly reduced innervation of scWAT, especially around the subiliac lymph node, they displayed an increase in small fiber sympathetic neurite branching, which may underlie their increased thermogenesis. We propose a homeostatic role of scWAT myeloid-lineage neuroimmune cells together in nerve maintenance and neuro-adipose regulation of energy expenditure.


Assuntos
Tecido Adiposo Branco , Fator Neurotrófico Derivado do Encéfalo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Obesidade/metabolismo , Termogênese/genética
9.
Front Immunol ; 13: 912193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711408

RESUMO

Recent studies using advanced techniques such as single cell RNA sequencing (scRNAseq), high parameter flow cytometry, and proteomics reveal that neutrophils are more heterogeneous than previously appreciated. Unique subsets have been identified in the context of bacterial and parasitic infections, cancer, and tissue injury and repair. The characteristics of infiltrating neutrophils differ depending on the nature of the inflammation-inciting stimulus, the stage of the inflammatory response, as well as the tissue microenvironment in which they accumulate. We previously described a new subpopulation of immature Ly6Glow neutrophils that accumulate in the peritoneal cavity 3 days following intraperitoneal (i.p.) administration of the fungal cell wall extract, zymosan. These neutrophils express markers of alternative activation and possess neuroprotective/regenerative properties. In addition to inducing neurite outgrowth of explanted neurons, they enhance neuronal survival and axon regeneration in vivo following traumatic injury to the optic nerve or spinal cord. In contrast, the majority of neutrophils that accumulate in the peritoneal fluid 4 hours following i.p. zymosan injection (4h NΦ) have features of conventional, mature Ly6Ghi neutrophils and lack neuroprotective or neuroregenerative properties. In the current study, we expand upon on our previously published observations by performing a granular, in-depth analysis of these i.p. zymosan-modulated neutrophil populations using scRNAseq and high parameter flow cytometry. We also analyze cell lysates of each neutrophil population by liquid chromatography/mass spectrometry. Circulating blood neutrophils, harvested from naive mice, are analyzed in parallel as a control. When samples were pooled from all three groups, scRNAseq revealed 11 distinct neutrophil clusters. Pathway analyses demonstrated that 3d NΦ upregulate genes involved in tissue development and wound healing, while 4h NΦ upregulate genes involved in cytokine production and perpetuation of the immune response. Proteomics analysis revealed that 3d NΦ and 4h NΦ also express distinct protein signatures. Adding to our earlier findings, 3d NΦ expressed a number of neuroprotective/neuroregenerative candidate proteins that may contribute to their biological functions. Collectively, the data generated by the current study add to the growing literature on neutrophil heterogeneity and functional sub-specialization and might provide new insights in elucidating the mechanisms of action of pro-regenerative, neuroprotective neutrophil subsets.


Assuntos
Axônios , Neutrófilos , Animais , Inflamação/metabolismo , Camundongos , Regeneração Nervosa , Zimosan/farmacologia
10.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35511417

RESUMO

Biological aging is the strongest factor associated with the clinical phenotype of multiple sclerosis (MS). Relapsing-remitting MS typically presents in the third or fourth decade, whereas the mean age of presentation of progressive MS (PMS) is 45 years old. Here, we show that experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of encephalitogenic CD4+ Th17 cells, was more severe, and less likely to remit, in middle-aged compared with young adult mice. Donor T cells and neutrophils were more abundant, while B cells were relatively sparse, in CNS infiltrates of the older mice. Experiments with reciprocal bone marrow chimeras demonstrated that radio-resistant, nonhematopoietic cells played a dominant role in shaping age-dependent features of the neuroinflammatory response, as well as the clinical course, during EAE. Reminiscent of PMS, EAE in middle-aged adoptive transfer recipients was characterized by widespread microglial activation. Microglia from older mice expressed a distinctive transcriptomic profile suggestive of enhanced chemokine synthesis and antigen presentation. Collectively, our findings suggest that drugs that suppress microglial activation, and acquisition or expression of aging-associated properties, may be beneficial in the treatment of progressive forms of inflammatory demyelinating disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Transferência Adotiva , Envelhecimento , Animais , Linfócitos T CD4-Positivos , Camundongos
11.
J Athl Train ; 56(2): 148-156, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428736

RESUMO

CONTEXT: Supervised exercise challenges (SECs) have been shown to be safe and beneficial in the early symptomatic period after concussion. Thus far, most in-clinic SECs studied have included a form of basic aerobic exercise only. An SEC that also includes dynamic forms of exercise mimics all steps of a standard return-to-play progression and may enhance the detection of concussion symptoms to guide in-clinic management decisions. OBJECTIVE: To determine whether an SEC that includes a dynamic SEC (DSEC) uncovered symptoms that would not have been identified by an SEC involving an aerobic SEC (ASEC) alone in adolescent patients with sport-related concussion. DESIGN: Retrospective case series. SETTING: Multidisciplinary sport concussion clinic at a tertiary care center. PATIENTS OR OTHER PARTICIPANTS: A total of 65 adolescent athletes (mean age = 14.9 ± 2.0 years, 72.3% males) who underwent an in-clinic SEC within 30 days of concussion. MAIN OUTCOME MEASURE(S): Presence of pre-exercise symptoms and symptom provocation during the SEC were recorded, with exercise-provoked symptoms categorized as occurring during ASEC or DSEC. RESULTS: Of the total patient sample, 69.2% (n = 45/65) experienced symptom provocation at some point during the SEC. Symptoms were provoked in 20 patients during the ASEC, whereas 25 completed the ASEC without symptom provocation before becoming symptomatic during the subsequent DSEC and 20 completed the SEC without any symptom provocation. Of the 65 patients in the total sample, 46 were asymptomatic immediately before the SEC. Of these previously asymptomatic patients, 23.9% (n = 11/46) experienced symptom provocation during the ASEC, and an additional 37.0% (n = 17/46) remained asymptomatic during the ASEC but then developed symptoms during the DSEC. CONCLUSIONS: The ASEC alone may not detect symptom provocation in a significant proportion of concussion patients who otherwise would develop symptoms during a DSEC.

12.
Clin J Sport Med ; 31(2): 127-132, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768444

RESUMO

OBJECTIVE: To assess the safety of supervised exercise (SE) in acute sport-related concussion (SRC) and its influence on recovery. DESIGN: Retrospective cohort study. SETTING: University SRC clinic at a tertiary care center. PATIENTS: One hundred ninety-four consecutive new patient charts were reviewed. Patients were included if they were seen within 30 days of sustaining a SRC, and their medical records included all required data elements. One hundred twenty-six patients were included in the analysis. INTERVENTIONS: Symptomatic patients who initiated SE within 16 days of SRC (n = 24) were compared with those who did not undergo SE or initiated SE after postinjury day 16 (n = 84). Age, sex, history of previous concussions, injury severity, relevant comorbidities, and other treatments received were included in the analysis. MAIN OUTCOME MEASURES: The association between early SE and clearance for return to sport was determined using a hazard ratio (HR). The number of days from SRC until clearance for return to sport and the number of days symptomatic from concussion were also compared between early SE and nonearly SE cohorts. RESULTS: No serious adverse events occurred in the early SE group. Early SE was associated with earlier return to sport (HR = 2.35, P = 0.030). The early SE group had fewer days from SRC until clearance for return to sport (mean 26.5 ± 11.2 days vs 35.1 ± 26.5 days, P = 0.020). There was a trend toward fewer symptomatic days in the early SE group (P = 0.054). CONCLUSION: Early SE performed in the symptomatic stage of SRC was safe and associated with earlier return to sport.


Assuntos
Traumatismos em Atletas/terapia , Concussão Encefálica/terapia , Terapia por Exercício/métodos , Adolescente , Criança , Terapia por Exercício/efeitos adversos , Feminino , Humanos , Masculino , Estudos Retrospectivos , Volta ao Esporte , Fatores de Tempo , Adulto Jovem
13.
Nat Immunol ; 21(12): 1496-1505, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106668

RESUMO

Transected axons typically fail to regenerate in the central nervous system (CNS), resulting in chronic neurological disability in individuals with traumatic brain or spinal cord injury, glaucoma and ischemia-reperfusion injury of the eye. Although neuroinflammation is often depicted as detrimental, there is growing evidence that alternatively activated, reparative leukocyte subsets and their products can be deployed to improve neurological outcomes. In the current study, we identify a unique granulocyte subset, with characteristics of an immature neutrophil, that had neuroprotective properties and drove CNS axon regeneration in vivo, in part via secretion of a cocktail of growth factors. This pro-regenerative neutrophil promoted repair in the optic nerve and spinal cord, demonstrating its relevance across CNS compartments and neuronal populations. Our findings could ultimately lead to the development of new immunotherapies that reverse CNS damage and restore lost neurological function across a spectrum of diseases.


Assuntos
Axônios/metabolismo , Comunicação Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Regeneração Nervosa , Neurônios/metabolismo , Neutrófilos/metabolismo , Animais , Biomarcadores , Plasticidade Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Sistema Nervoso Central/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Camundongos , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Nervo Óptico/imunologia , Nervo Óptico/metabolismo , Receptores de Interleucina-8B/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Transcriptoma , Zimosan/metabolismo , Zimosan/farmacologia
15.
Front Neurol ; 3: 130, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23060851

RESUMO

Sports concussions are an increasingly recognized common type of mild traumatic brain injury (TBI) that affect athletes of all ages. The need for an increased involvement of trained physicians in the diagnosis and treatment of concussion has become more obvious as the pathophysiology and long-term sequelae of sports concussion are better understood. To date, there has been great variability in the athletic community about the recognition of symptoms, diagnosis, management, and physician role in concussion care. An awareness assessment survey administered to 96 high school coaches in a large metropolitan city demonstrated that 37.5% of responders refer their concussed players to an emergency department after the incident, only 39.5% of responders have a physician available to evaluate their players after a concussion, 71.6% of those who had a physician available sent their players to a sports medicine physician, and none of the responders had their player's concussion evaluated by a neurologist. Interestingly, 71.8% of responders stated that their players returned to the team with "return to play" guidelines from their physician. This survey has highlighted two important areas where the medical community can better serve the athletic community. Because a concussion is a sport-inflicted injury to the nervous system, it is optimally evaluated and managed by a clinician with relevant training in both clinical neuroscience and sports medicine. Furthermore, all physicians who see patients suffering concussion should be educated in the current recommendations from the Consensus Statement on Concussion and provide return to play instructions that outline a graduated return to play, allowing the athlete to return to the field safely.

16.
J Neurosci ; 29(12): 3948-55, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19321791

RESUMO

Interferon-alpha (IFNalpha) is a pleomorphic cytokine produced by nucleated cells in response to viral infection. In patients, treatment with IFNalpha has side effects including cognitive impairment resembling subcortical dementia, which is a hallmark of human immunodeficiency virus (HIV)-associated dementia (HAD). IFNalpha is increased in the CSF of HAD patients compared with HIV patients without dementia. In this study, blocking IFNalpha in a HIV encephalitis (HIVE) mouse model with intraperitoneal injections of IFNalpha neutralizing antibodies (NAbs) significantly improved cognitive function compared with untreated or control antibody-treated HIVE mice during water radial arm maze behavioral testing. Treatment with IFNalpha NAbs significantly decreased microgliosis and prevented loss of dendritic arborization in the brains of HIVE mice. Furthermore, treatment of primary neuron cultures with IFNalpha resulted in dose-dependent loss of dendritic arborization that was blocked with IFNalpha NAb treatment and partially blocked with NMDA antagonists [AP5 and MK801 (dizocilpine maleate)] indicating glutamate signaling is involved in IFNalpha-mediated neuronal damage. These results show that IFNalpha has a major role in the pathogenesis of HIVE in mice and is likely important in the development neurocognitive dysfunction in humans with HIV. Blocking IFNalpha could be important in improving cognitive and pathological developments in HAD patients and may be clinically important in other neuroinflammatory diseases as well.


Assuntos
Complexo AIDS Demência/patologia , Encefalite Viral/patologia , HIV-1 , Interferon-alfa/fisiologia , Neurônios/efeitos dos fármacos , Complexo AIDS Demência/psicologia , Complexo AIDS Demência/virologia , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Encefalite Viral/psicologia , Encefalite Viral/virologia , Humanos , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/imunologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos SCID , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
17.
J Neurosci ; 28(40): 10010-6, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829958

RESUMO

Human immunodeficiency virus (HIV)-associated dementia (HAD) is common among clade B HIV-infected individuals, but less common and less severe among individuals infected with clade C HIV-1, suggesting clade-specific differences in neuropathogenicity. Although differences in neuropathogenicity have been investigated in vitro using viral proteins responsible for HAD, to date there are no virological studies using animal models to address this issue. Therefore, we investigated neuropathogenesis induced by HIV-1 clades using the severe combined immune deficiency (SCID) mouse HIV encephalitis model, which involves intracranial injection of macrophages infected with representative clade B (HIV-1(ADA)) or clade C (HIV-1(Indie-C1)) HIV-1 isolates into SCID mice. In cognitive tests, mice exposed to similar inputs of HIV-1 clade C made fewer memory errors than those exposed to HIV-1 clade B. Histopathological analysis of mice exposed to clade B exhibited greater astrogliosis and increased loss of neuronal network integrity. In vitro experiments revealed differences in a key characteristic of HIV-1 that influences HAD, increased monocyte infiltration. HIV-1(Indie-C1)-infected macrophages recruited monocytes poorly in vitro compared with HIV-1(ADA)-infected macrophages. Monocyte recruitment was HIV-1 Tat and CCL2 dependent. This is the first demonstration, ever since HIV neuropathogenesis was first recognized, that viral genetic differences between clades can affect disease severity and that such studies help identify key players in neuropathogenesis by HIV-1.


Assuntos
Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/fisiologia , Complexo AIDS Demência/etiologia , Complexo AIDS Demência/patologia , Complexo AIDS Demência/virologia , Animais , Células Cultivadas , Produtos do Gene tat/fisiologia , Infecções por HIV/etiologia , HIV-1/isolamento & purificação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID
18.
AIDS ; 21(16): 2151-9, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-18090041

RESUMO

BACKGROUND: Interferon alpha (IFNalpha) is an antiviral cytokine produced in response to viral infection. IFNalpha also acts as a neuromodulatory molecule in the central nervous system (CNS). Elevated IFNalpha in the CNS causes cognitive deficits. OBJECTIVE: To determine if elevated levels of IFNalpha in an HIV encephalitis mouse model correlate with cognitive deficits. METHODS: C57BL/6J SCID mice were inoculated intracerebrally (i.c.) with HIV infected or uninfected (control) macrophages and cognitively tested in a water escape radial arm maze. After behavioral testing was completed, immunohistochemistry and ELISA were used to examine brain pathology and IFNalpha expression. RESULTS: Mice injected i.c. with HIV infected macrophages exhibited significantly more working memory errors, particularly in trials with the highest memory load. Immunohistochemistry indicated increased mouse IFNalpha staining prevalent on neurons and glial cells in the brains of mice with HIV infected macrophages compared to mice with uninfected control macrophages. In addition, IFNalpha levels in the brain correlated directly with working memory errors for mice with HIV infected macrophages. CONCLUSIONS: These data suggest that the cognitive deficit noted for the C57BL/6J SCID mice with HIV infected macrophages is mediated by the infection induced increase in IFNalpha.


Assuntos
Complexo AIDS Demência/imunologia , Complexo AIDS Demência/psicologia , Encéfalo/imunologia , HIV-1 , Interferon-alfa/análise , Transtornos da Memória/virologia , Animais , Química Encefálica , Ensaio de Imunoadsorção Enzimática/métodos , Imuno-Histoquímica , Macrófagos/virologia , Masculino , Transtornos da Memória/imunologia , Camundongos , Camundongos SCID , Modelos Animais , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA