Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Small ; : e2308293, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282181

RESUMO

Zeolites have been widely applied as versatile catalysts, sorbents, and ion exchangers with unique porous structures showing molecular sieving capability. In these years, it is reported that some layered zeolites can be delaminated into molecularly thin 2-dimensional (2D) nanosheets characterized by inherent porous structures and highly exposed active sites. In the present study, two types of zeolite nanosheets with distinct porous structures with MWW topology (denoted mww) and ferrierite-related structure (denoted bifer) are deposited on a substrate through the solution process via electrostatic self-assembly. Alternate deposition of zeolite nanosheets with polycation under optimized conditions allows the layer-by-layer growth of their multilayer films with a stacking distance of 2-3 nm. Furthermore, various hierarchical structures defined at the unit-cell dimensions can be constructed simply by conducting the deposition of mww and bifer nanosheets in a designed sequence. Adsorption of a dye, Rhodamine B, in these films, is examined to show that adsorption is dependent on constituent zeolite nanosheets and their assembled nanostructures. This work has provided fundamental advancements in the fabrication of artificial zeolite-related hierarchical structures, which may be extended to other zeolite nanosheets, broadening their functionalities, applications, and benefits.

2.
Adv Mater ; 36(4): e2307341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37800413

RESUMO

Zeolites are highly efficient industrial catalysts and sorbents with microporous framework structures. Approximately 10% of the frameworks, but eventually all in the long run, have produced both 3D crystals and 2D layers. The latter can be intercalated and expanded like all 2D materials but proved difficult to exfoliate directly into suspensions of monolayers in solution as precursors for unique synthetic opportunities. Successful exfoliations have been reported recently and are overviewed in this perspective article. The discussion highlights 3 primary challenges in this field, namely finding suitable 2D zeolite preparations that exfoliate directly in high yield, proving uniform layer thickness in solution and identifying applications to exploit the unique synthetic capabilities and properties of exfoliated zeolite monolayers. Four zeolites have been confirmed to exfoliate directly into monolayers: 3 with known structures-MWW, MFI, and RWR and one unknown, bifer with a unit cell close to ferrierite. The exfoliation into monolayers is confirmed by the combination of 5-6 characterization techniques including AFM, in situ and in-plane XRD, and microscopies. The promising areas of development are oriented films and membranes, intimately mixed zeolite phases, and hierarchical nanoscale composites with other active species like nanoparticles and clusters that are unfeasible by solid state processes.

3.
Angew Chem Int Ed Engl ; 62(52): e202311451, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37861089

RESUMO

Unlike absorption-based colors of dyes and pigments, reflection-based colors of photonic crystals, so called "structural colors", are responsive to external stimuli, but can remain unfaded for over ten million years, and therefore regarded as a next-generation coloring mechanism. However, it is a challenge to rationally design the spectra of structural colors, where one structure gives only one reflection peak defined by Bragg's law, unlike those of absorption-based colors. Here, we report a reconfigurable photonic crystal that exhibits single-peak and double-peak structural colors. This photonic crystal is composed of a colloidal nanosheet in water, which spontaneously adopts a layered structure with single periodicity (407 nm). After a temperature-gradient treatment, the photonic crystal segregates into two regions with shrunken (385 nm) and expanded (448 nm) periodicities, and thus exhibits double reflection peaks that are blue- and red-shifted from the original one, respectively. Notably, the transition between the single-peak and double-peak states is reversible.

4.
Biomed Rep ; 19(3): 61, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37614988

RESUMO

Acquired hemophilia A (AHA) is a rare disease that results from factor VIII inhibitors causing abnormal coagulation, and certain cases may develop after highly invasive surgery. The present case study reports on a 68-year-old male patient who developed AHA after undergoing a subtotal stomach-preserving pancreatoduodenectomy for distal cholangiocarcinoma. The patient experienced complications after surgery, requiring reoperation on postoperative day (PD) 5 due to rupture of the Braun's enterostomy. On PD 6, angiography was performed after bleeding was detected in the jejunal limb, but hemostasis occurred spontaneously during the examination. Bleeding was observed again on PD 8 and direct surgical ligation was performed. On PD 14, bleeding recurred in the jejunal limb and angiography was performed to embolize the periphery of the second jejunal artery. During the procedure, the prothrombin time was normal, but only the activated partial thromboplastin time was prolonged. A close examination of the coagulation system revealed a decrease in factor VIII levels and the presence of factor VIII inhibitors, resulting in the diagnosis of AHA. Administration of steroids was initiated on PD 15 and, in addition to daily blood transfusions, activated prothrombin complex concentrate was administered to achieve hemostasis. The patient was discharged from the intensive care unit on PD 36 but later developed an intractable labial fistula due to suture failure at the gastrojejunostomy site. As the use of factor VIII inhibitors continued despite the administration of steroids, cyclophosphamide (CPA) pulse therapy was added at PD 58. However, CPA was ineffective and the administration of rituximab was initiated on PD 98. After 12 courses of rituximab, the patient tested negative for factor VIII inhibitors on PD 219. On PD 289, labial fistula closure was performed with continuous replacement of factor VIII and the patient was discharged on PD 342.

5.
Small ; 19(42): e2303221, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330649

RESUMO

The design and development of efficient catalysts for electrochemical nitrogen reduction reaction (ENRR) under ambient conditions are critical for the alternative ammonia (NH3 ) synthesis from N2 and H2 O, wherein iron-based electrocatalysts exhibit outstanding NH3 formation rate and Faradaic efficiency (FE). Here, the synthesis of porous and positively charged iron oxyhydroxide nanosheets by using layered ferrous hydroxide as a starting precursor, which undergoes topochemical oxidation, partial dehydrogenated reaction, and final delamination, is reported. As the electrocatalyst of ENRR, the obtained nanosheets with a monolayer thickness and 10-nm mesopores display exceptional NH3 yield rate (28.5 µg h-1 mgcat. -1 ) and FE (13.2%) at a potential of -0.4 V versus RHE in a phosphate buffered saline (PBS) electrolyte. The values are much higher than those of the undelaminated bulk iron oxyhydroxide. The larger specific surface area and positive charge of the nanosheets are beneficial for providing more exposed reactive sites as well as retarding hydrogen evolution reaction. This study highlights the rational control on the electronic structure and morphology of porous iron oxyhydroxide nanosheets, expanding the scope of developing non-precious iron-based highly efficient ENRR electrocatalysts.

6.
ACS Nano ; 17(13): 12305-12315, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366239

RESUMO

Monolayer ruthenate nanosheets obtained by exfoliating layered ruthenium oxide exhibit excellent electrical conductivity, redox activity, and catalytic activity, which render them suitable for advanced electronic and energy devices. However, to fully exploit the benefits, we require further structural insights into a complex polymorphic nature and diversity in relevant electronic states of two-dimensional (2D) ruthenate systems. In this study, the 2D structures, stability, and electronic states of 2D ruthenate are investigated on the basis of thermal and chemical phase engineering approaches. We reveal that contrary to a previous report, exfoliation of an oblique 1T phase precursor leads to nanosheets having an identical phase without exfoliation-induced phase transition to a 1H phase. The oblique 1T phase in the nanosheets is found to be metastable and, thus, transforms successively to a rectangular 1T phase upon heating. A phase-controllable synthesis via Co doping affords nanosheets with metastable rectangular and thermally stable hexagonal 1T phases at a Co content of 5-10 and 20 at%, respectively. The 1T phases show metallic electronic states, where the d-d optical transitions between the Ru 4d (t2g) orbital depend on the symmetry of the Ru framework. The Co doping in ruthenate nanosheets unexpectedly suppresses the redox and catalytic activities under acidic conditions. In contrast, the Co2+/3+ redox pair is activated and produces conductive nanosheets with high electrochemical capacitance in an alkaline condition.

7.
Nano Lett ; 23(9): 3788-3795, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126862

RESUMO

Dielectric capacitors have greater power densities than batteries, and, unlike batteries, they do not utilize chemical reactions during cycling. Thus, they can become ideal, safe energy storage devices. However, dielectric capacitors yield rather low energy densities compared with other energy storage devices such as batteries and supercapacitors. Here, we present a rational approach for designing ultrahigh energy storage capacitors using two-dimensional (2D) high-κ dielectric perovskites (Ca2Nam-3NbmO3m+1; m = 3-6). Individual Ca2Nam-3NbmO3m+1 nanosheets exhibit an ultrahigh dielectric strength (638-1195 MV m-1) even in the monolayer form, which exceeds those of conventional dielectric materials. Multilayer stacked nanosheet capacitors exhibit ultrahigh energy densities (174-272 J cm-3), high efficiencies (>90%), excellent reliability (>107 cycles), and temperature stability (-50-300 °C); the maximum energy density is much higher than those of conventional dielectric materials and even comparable to those of lithium-ion batteries. Enhancing the energy density may make dielectric capacitors more competitive with batteries.

8.
Science ; 380(6641): 192-198, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053325

RESUMO

Mechanical nonreciprocity, or the asymmetric transmission of mechanical quantities between two points in space, is crucial for developing systems that can guide, damp, and control mechanical energy. We report a uniform composite hydrogel that displays substantial mechanical nonreciprocity, owing to direction-dependent buckling of embedded nanofillers. This material exhibits an elastic modulus more than 60 times higher when sheared in one direction compared with the opposite direction. Consequently, it can transform symmetric vibrations into asymmetric ones that are applicable for mass transport and energy harvest. Furthermore, it exhibits an asymmetric deformation when subjected to local interactions, which can induce directional motion of various objects, including macroscopic objects and even small living creatures. This material could promote the development of nonreciprocal systems for practical applications such as energy conversion and biological manipulation.

9.
ACS Appl Mater Interfaces ; 14(45): 51212-51221, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36322104

RESUMO

Anion-exchange membranes (AEMs) with high conductivity are crucial for realizing next-generation energy storage and conversion systems in an alkaline environment, promising a huge advantage in cost reduction without using precious platinum group metal catalysts. Layered double hydroxide (LDH) nanosheets, exhibiting a remarkably high hydroxide ion (OH-) conductivity approaching 10-1 S cm-1 along the in-plane direction, may be regarded as an ideal candidate material for the fabrication of inorganic solid AEMs. However, two-dimensional anisotropy results in a substantially low conductivity of 10-6 S cm-1 along the cross-plane direction, which poses a hurdle to achieve fast ion conduction across the membrane comprising restacked nanosheets. In the present work, a composite membrane was prepared based on mixing/assembling micron-sized LDH nanosheets with nanosized LDH platelets (nanoparticles) via a facile vacuum filtration process. The hybridization with nanoparticles could alter the orientation of LDH nanosheets and reduce the restacking order, forming diversified fast ion-conducting pathways and networks in the composite membrane. As a result, the transmembrane conductivity significantly improved up to 1000-fold higher than that composed of restacked nanosheets only, achieving a high conductivity of 10-2 to 10-1 S cm-1 in both in-plane and cross-plane directions.

10.
Langmuir ; 38(40): 12399-12407, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36172710

RESUMO

Neat (dense and nonoverlapped) monolayer tiling of 2D nanosheets on a substrate surface is very important because we can conduct artificial lattice-engineering by repeating the tiling process in a designed sequence to tailor various hierarchical nanostructures, leading to a range of sophisticated functions. It is recently reported that a facile spin-coating technique realizes the neat monolayer tiling of various 2D nanosheets. Establishing universal guidelines to neatly tile 2D nanosheets on substrates of various materials and size/shape is of essential importance to fully apply this technique, but the mechanism of how the nanosheets are tiled has not been clarified yet. In the present study, we have systematically examined the nanosheet deposition process at various rotation speeds by microscopic observations and found that the neat monolayer tiling of nanosheets is attained on the solvent surface during the spin-coating, and then the monolayer film is deposited onto the substrate surface from its center toward the edges upon evaporation of the solvent. Furthermore, we have clarified how the rotation speed and the nanosheet concentration govern the deposition behaviors in terms of neat tiling, overlap, or noncoverage in a such process. On the basis of the guidelines, we can predict the optimum spin-coating conditions for attaining the neat monolayer tiling of various nanosheets over an entire surface of the substrate.

11.
ACS Appl Mater Interfaces ; 14(16): 18513-18524, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35437011

RESUMO

A method for creating genuine nanopores in high area density on monolayer two-dimensional (2D) metallic oxides has been developed. By use of the strong reduction capability of hydroiodic acid, active metal ions, such as FeIII and CoIII, in 2D oxide nanosheets can be reduced to a divalent charge state (2+). The selective removal of FeO2 and CoO2 metal oxide units from the framework can be tuned to produce pores in a range of 1-4 nm. By monitoring of the redox reaction kinetics, the pore area density can be also tuned from ∼0.9 × 104 to ∼3.3 × 105 µm-2. The universality of this method to produce much smaller pores and higher area density than the previously reported ones has been proven in different oxide nanosheets. To demonstrate their potential applications, ultrasmall metal organic framework particles were grown inside the pores of perforated titania oxide nanosheets. The optimized hybrid film showed ∼100% rejection of methylene blue (MB) from the water. Its water permeance reached 4260 L m-2 h-1 bar-1, which is 1-3 orders of that for reported 2D membranes with good MB rejections.

12.
ACS Nano ; 16(3): 4775-4785, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35235304

RESUMO

Atomic interfacial electric fields hold great potential for boosting ionic and charge transfer and accelerating electrochemical reaction kinetics. Here, built-in electric fields within the heterostructure are created by electrostatic assembly of unilamellar titano-niobate/graphene (reduced graphene oxide) nanosheets as building blocks. Scanning Kelvin probe microscopy confirms the existence of built-in electric fields by detecting the unbalanced surface potential of disparate nanosheets in the heterostructure, which facilitates ion and electron transfer, thus enabling an excellent reversible sodium storage capacity of 245 mAh g-1 at 0.05 A g-1. Theoretical analysis also confirms that the electric field can enhance the electric conductivity and facilitate electron transfer at the atomic interface. Moreover, in situ TEM observations confirm the homogeneous intercalation of sodium ions and very small volume expansion of the hybrid materials. As a result, a highly stable lifetime of 3000 cycles is achieved with capacity retention of 98.8%. This work attests the importance of accelerating ionic and charge transfer through atomic interfacial electric field for superior sodium storage.

13.
ACS Nano ; 16(3): 4028-4040, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35188374

RESUMO

Flocculation or restacking of different kinds of two-dimensional (2D) nanosheets into heterostructure nanocomposites is of interest for the development of high-performance electrode materials and catalysts. However, lacking a molecular-scale control on the layer sequence hinders enhancement of electrochemical activity. Herein, we conducted electrostatic layer-by-layer (LbL) assembly, employing oxide nanosheets (e.g., MnO2, RuO2.1, reduced graphene oxide (rGO)) and layered double hydroxide (LDH) nanosheets (e.g., NiFe-based LDH) to explore a series of mono- and bilayer films with various combinations of nanosheets and sequences toward oxygen evolution reaction (OER). The highest OER activity was attained in bilayer films of electrically conductive RuO2.1 nanosheets underlying catalytically active NiFe LDH nanosheets with mixed octahedral/tetrahedral coordination (NiFe LDHTd/Oh). At an overpotential of 300 mV, the RuO2.1/NiFe LDHTd/Oh film exhibited an electrochemical surface area (ECSA) normalized current density of 2.51 mA cm-2ECSA and a mass activity of 3610 A g-1, which was, respectively, 2 and 5 times higher than that of flocculated RuO2.1/NiFe LDHTd/Oh aggregates with a random appearance of a surface layer. First-principles density functional theory calculations and COMSOL Multiphysics simulations further revealed that the improved catalytic performance was ascribed to a substantial electronic coupling effect in the heterostructure, in which electrons are transferred from exposed NiFe LDHTd/Oh nanosheets to underneath RuO2.1. The study provides insight into the rational control and manipulation of redox-active surface layers and conductive underlying layers in heteroassembled nanosheet films at molecular-scale precision for efficient electrocatalysis.

14.
Asian J Endosc Surg ; 15(1): 184-187, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34089290

RESUMO

A 29-year-old male patient underwent laparoscopic sleeve gastrectomy (LSG) for morbid obesity and was discharged without any complications. Thirteen months later, he visited the emergency room with epigastric pain. A few hours before onset, he had had a larger-than-usual meal and vomited afterwards. Enhanced abdominal computed tomography revealed a hematoma 127 × 63 mm in diameter around the stomach. Angiography revealed no extravasation or pseudoaneurysm. Upper gastrointestinal endoscopy found no ulcers or abnormality of the stapler line scar from the LSG. The patient's vital signs were stable, and his hemoglobin had not fallen below the previous day's value. Conservative treatment was therefore chosen. The patient was discharged in stable condition after 11 days of hospitalization. However, the exact source of the hemorrhage was unable to be detected on the imaging findings. In view of his clinical course and the hematoma location, omental vessels were suspected of being the source of the hemorrhage.


Assuntos
Cavidade Abdominal , Laparoscopia , Obesidade Mórbida , Adulto , Gastrectomia/efeitos adversos , Humanos , Masculino , Obesidade Mórbida/cirurgia , Complicações Pós-Operatórias , Período Pós-Operatório , Estudos Retrospectivos
15.
Nat Commun ; 12(1): 6771, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799572

RESUMO

Just like in living organisms, if precise coherent operation of tiny movable components is possible, one may generate a macroscopic mechanical motion. Here we report that ~1010 pieces of colloidally dispersed nanosheets in aqueous media can be made to operate coherently to generate a propagating macroscopic wave under a non-equilibrium state. The nanosheets are initially forced to adopt a monodomain cofacial geometry with a large and uniform plane-to-plane distance of ~420 nm, where they are strongly correlated by competitive electrostatic repulsion and van der Waals attraction. When the electrostatic repulsion is progressively attenuated by the addition of ionic species, the nanosheets sequentially undergo coherent motions, generating a propagating wave. This elaborate wave in time and space can transport microparticles over a long distance in uniform direction and velocity. The present discovery may provide a general principle for the design of macroscopically movable devices from huge numbers of tiny components.

16.
J Phys Chem Lett ; 12(41): 10135-10143, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34637310

RESUMO

Layered rare-earth hydroxides (LREHs) are promising optical and magnetic materials, while it is hard to obtain monolayer nanosheets through a direct exfoliation. In this study, organic dodecyl sulfate (C12H25SO4-, DS-) was used to prepare LREHs. In-plane lattice parameters of the LREHs decreased from Sm3+ to Er3+, correlating well with the monotonically decreasing ionic radius. Conversely, the interlayer spacing slightly increased with the increase of host layer charge density and corresponding intercalated DS- contents. By a direct sonication of the LREHs in formamide, nanosheets were obtained with a thickness of ∼1 nm and size of ∼500 nm. Compared to the bulk crystals, exfoliation resulted in a slight elongation of in-plane lattice constants and a more asymmetric coordination environment. The suspension of europium hydroxide nanosheets exhibited a remarkably high red-light emission purity (91.4%). This work demonstrated an important strategy toward an efficient synthesis of well-defined LREH nanosheets with high color purity.

17.
ACS Appl Mater Interfaces ; 13(36): 43258-43265, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34459604

RESUMO

This study reports a design of a variety of nanostructured films of 2D oxide nanosheets. We systematically examined the deposition of perovskite-type Ca2Nb3O10- nanosheets by spin-coating their dimethyl sulfoxide dispersion. Neat and homogeneous monolayer tiling was attained on various substrates by selecting an optimum rotation speed, which was dependent on the nanosheet concentration. Repeating the optimized spin-coating process allowed for layer-by-layer deposition of the nanosheets into multilayer films with a designed layer number. Vertical superlattice heterostructures could also be assembled by alternately spin-coating the suspensions of Ca2Nb3O10- and Ti0.87O20.52- nanosheets. Furthermore, spin-coating of a mixed suspension of Ca2Nb3O10- and Ti0.87O20.52- nanosheets led to a mixed mosaic-like monolayer of these two nanosheets. The present study thus demonstrated spin-coating as a facile and powerful route to construct various nanostructures based on 2D oxide nanosheets.

18.
Nano Lett ; 21(16): 7044-7049, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428904

RESUMO

Molecularly thin two-dimensional (2D) nanomaterials are attractive building blocks for constructing anticorrosion nanocoatings as an ultimate pursuit in the metal-related industry. However, the nanocoating of prefocused graphene is far from industrial demands due to its high cost, low scalability, and insufficient quality. We propose all requirements to realize rational anticorrosion nanocoating of metal oxide nanosheets. The proof-of-concept study with Ti0.87O2 and Ca2Nb3O10 nanosheets demonstrates that the 10 and 20 nm thick coatings fabricated by a facile layer-by-layer (LbL) self-assembly on stainless steel (SUS) give perfect inhibition efficiency (IE) values of 99.92% and 99.89%, respectively. A driving test with a nanosheet-coated car-baffle demonstrated suitable corrosion resistance and mechanical and thermal robustness for industrial applications. The revealed and controlled thermal oxidation mechanisms are critical toward high-temperature application of the 2D oxide anticorrosion nanocoating. The advantages of nanosheet coating and extensible materials design will open a solid but exciting route to anticorrosion nanotechnology.

19.
J Am Chem Soc ; 143(29): 11052-11062, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264655

RESUMO

Direct exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes. The extension to other frameworks, which provides broader benefits, diversified activity, and functionality, is not routine and requires finding suitable synthesis formulations, viz. compositions and conditions, of the layered zeolites themselves. This article reports exfoliation and characterization of layers with ferrierite-related structure, denoted bifer, having rectangular lattice constants like those of the FER and CDO zeolites, and thickness of approximately 2 nm, which is twice that of the so-called fer layer. Several techniques were combined to prove the exfoliation, supported by simulations: AFM; in-plane, in situ, and powder X-ray diffraction; TEM; and SAED. The results confirmed (i) the structure and crystallinity of the layers without unequivocal differentiation between the FER and CDO topologies and (ii) uniform thickness in solution (monodispersity), ruling out significant multilayered particles and other impurities. The bifer layers are zeolitic with Brønsted acid sites, demonstrated catalytic activity in the alkylation of mesitylene with benzyl alcohol, and intralayer pores visible in TEM. The practical benefits are demonstrated by the preparation of unprecedented intimately mixed zeolite composites with the mww, with activity greater than the sum of the components despite high content of inert silica as pillars.

20.
Nat Commun ; 12(1): 4184, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234123

RESUMO

The regulation of anions and cations at the atomic scale is of great significance in membrane-based separation technologies. Ionic transport regulation techniques could also play a crucial role in developing high-performance alkali metal batteries such as alkali metal-sulfur and alkali metal-selenium batteries, which suffer from the non-uniform transport of alkali metal ions (e.g., Li+ or Na+) and detrimental shuttling effect of polysulfide/polyselenide anions. These drawbacks could cause unfavourable growth of alkali metal depositions at the metal electrode and irreversible consumption of cathode active materials, leading to capacity decay and short cycling life. Herein, we propose the use of a polypropylene separator coated with negatively charged Ti0.87O2 nanosheets with Ti atomic vacancies to tackle these issues. In particular, we demonstrate that the electrostatic interactions between the negatively charged Ti0.87O2 nanosheets and polysulfide/polyselenide anions reduce the shuttling effect. Moreover, the Ti0.87O2-coated separator regulates the migration of alkali ions ensuring a homogeneous ion flux and the Ti vacancies, acting as sub-nanometric pores, promote fast alkali-ion diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA