Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Biochem Biophys ; 82(1): 235-245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38064100

RESUMO

Oxidative stress (OS) plays a key role in the development of cardiovascular diseases (CVD) in three major ways: reactive oxygen species (ROS)-induced reduction of nitric oxide (NO) bioavailability, ROS-induced inflammation and ROS-induced mitochondrial dysfunction. Oxidation of lipid molecules under the action of ROS leads to damage to membrane structures, changes the functioning of membrane-bound enzymes, and impairs membrane permeability and stability. An increase in OS results in the occurrence of endothelial dysfunction and drug tolerance, side effects, requiring discontinuation of drugs. All of these are significant problems of cardiotherapy. Therefore, the search for new alternative NO donors continues. The present research was aimed at studying the protective effect of 2-ethyl-3-hydroxy-6-methylpyridinium 2-nitroxysuccinate (NS) on the cardiovascular system on mouse myocardial ischemia (MI) model. The NS hybrid molecule includes a synthetic vitamin B6 analog 2-ethyl-3-hydroxy-6-methylpyridine (an antioxidant) and 2-nitroxysuccinic acid (a source of nitric oxide). Using the electron paramagnetic resonance (EPR) method and biochemical methods, we showed that the pronounced ability of NS to release NO is favorably combines with the capacity to prevent OS due to mechanisms such as suppression of the lipid peroxidation (LPO) process, antiradical activity and inhibition of the mitochondrial membrane-bound monoamine oxidase A (MAO-A). Using histological methods, we established that the administration of NS (10 mg/kg, i.p.) reduces the number of ischemic fibers and protects cardiomyocytes against ischemia injury. Thus, the complex protective effect allows us to consider NS as an alternative NO donor and a candidate for the development of a new pharmaceutical agent for the treatment of CVD.


Assuntos
Doenças Cardiovasculares , Isquemia Miocárdica , Camundongos , Animais , Espécies Reativas de Oxigênio , Hidrocortisona/farmacologia , Epinefrina/farmacologia , Óxido Nítrico , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/tratamento farmacológico , Estresse Oxidativo , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia
2.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003553

RESUMO

Using a novel method of N-substituted succinimide ring opening, new N-hydroxybutanamide derivatives were synthesized. These compounds were evaluated for their ability to inhibit matrix metalloproteinases (MMPs) and their cytotoxicity. The iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide showed the inhibition of MMP-2, MMP-9, and MMP-14 with an IC50 of 1-1.5 µM. All the compounds exhibited low toxicity towards carcinoma cell lines HeLa and HepG2. The iodoaniline derivative was also slightly toxic to glioma cell lines A-172 and U-251 MG. Non-cancerous FetMSC and Vero cells were found to be the least sensitive to all the compounds. In vivo studies demonstrated that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide had low acute toxicity. In a mouse model of B16 melanoma, this compound showed both antitumor and antimetastatic effects, with a 61.5% inhibition of tumor growth and an 88.6% inhibition of metastasis. Our findings suggest that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide has potential as a lead structure for the development of new MMP inhibitors. Our new synthetic approach can be a cost-effective method for the synthesis of inhibitors of metalloenzymes with promising antitumor potential.


Assuntos
Antineoplásicos , Humanos , Animais , Camundongos , Chlorocebus aethiops , Antineoplásicos/química , Células Vero , Inibidores de Metaloproteinases de Matriz/química , Células HeLa , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499230

RESUMO

A series of novel water-soluble salts of benzofuroxans was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan with various amines. The salts obtained showed good effectiveness of the pre-sowing treatment of seeds of agricultural crops at concentrations of 20-40 mmol. In some cases, the seed treatment with salts leads not only to improved seed germination, but also to the suppression of microflora growth. Additionally, their anti-cancer activityin vitrohas been researched. The compounds with morpholine fragments or a fragment of N-dimethylpropylamine, demonstrated the highest cytotoxic activity, which is in good correlation with the ability to inhibit the glycolysis process in tumor cells. Two compounds 4e and 4g were selected for further experiments using laboratory animals. It was found that the lethal dose of 50% (LD50) is 22.0 ± 1.33 mg/kg for 4e and 13.75 ± 1.73 mg/kg for 4g, i.e., compound 4e is two times less toxic than 4g, according to the mouse model in vivo. It was shown that the studied compounds exhibit antileukemia activity after a single intraperitoneal injection at doses from 1.25 to 5 mg/kg, as a result of which the average lifespan of animals with a P388 murine leukemia tumor increases from 20 to 28%. Thus, the water-soluble salts of benzofuroxans can be considered as promisingcandidates for further development, both as anti-cancer agents and as stimulants for seed germination and regulators of microflora crop growth.


Assuntos
Antineoplásicos , Benzoxazóis , Animais , Camundongos , Benzoxazóis/farmacologia , Sementes , Sais , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Água , Germinação
4.
Molecules ; 24(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450696

RESUMO

A library of novel 2-(het)arylpyrrolidine-1-carboxamides were obtained via a modular approach based on the intramolecular cyclization/Mannich-type reaction of N-(4,4-diethoxybutyl)ureas. Their anti-cancer activities both in vitro and in vivo were tested. The in vitro activity of some compounds towards M-Hela tumor cell lines was twice that of the reference drug tamoxifen, whereas cytotoxicity towards normal Chang liver cell did not exceed the tamoxifen toxicity. In vivo studies showed that the number of surviving animals on day 60 of observation was up to 83% and increased life span (ILS) was up to 447%. Additionally, some pyrrolidine-1-carboxamides possessing a benzofuroxan moiety obtained were found to effectively suppress bacterial biofilm growth. Thus, these compounds are promising candidates for further development both as anti-cancer and anti-bacterial agents.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Animais , Anti-Infecciosos/química , Antineoplásicos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Pirrolidinas/química , Relação Estrutura-Atividade
5.
Curr Cancer Drug Targets ; 18(4): 365-371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28669342

RESUMO

BACKGROUND: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. OBJECTIVE: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. METHOD: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. RESULTS: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. CONCLUSION: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Leucemia Linfoide/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Células HeLa , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Leucemia Linfoide/metabolismo , Leucemia Linfoide/patologia , Masculino , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA