Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Mol Phylogenet Evol ; 188: 107910, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640170

RESUMO

Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters.


Assuntos
Antozoários , Animais , Filogenia , Antozoários/genética , Evolução Biológica , Biodiversidade , Éxons
3.
Harmful Algae ; 84: 188-194, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31128803

RESUMO

The dinoflagellate Karenia brevis causes harmful algal blooms commonly referred to as red tides that are prevalent along Florida's gulf coast. Severe blooms often cause fish kills, turbid water, and hypoxic events all of which can negatively impact local fisheries. The stone crab, Menippe mercenaria, is a ˜$25 million per year fishery that occurs primarily along Florida's gulf coast. On the west Florida shelf, red tides occur from fall through spring, although severe blooms can occur during the summer. During the summer, stone crabs are reproductive and release larvae that are transported offshore where K. brevis blooms originate. This study determined the effects of K. brevis exposure on the survivorship, vertical swimming behavior, and oxygen consumption of stage-1 larval stone crabs. Survivorship was determined by exposing larvae to high (> 1 × 106 cells L-1) and medium (˜1 × 105 cells L-1) K. brevis concentrations for 96-hrs and were compared to controls that had no algae present. Larval swimming behavior (i.e., geotaxis) and oxygen consumption were monitored after 6-hr exposure to K. brevis. After 96-hrs of exposure, mortality was 100% and 30% for larvae in the high and medium concentrations of K. brevis, respectively, relative to the control. Larval swimming behavior was reversed in the K. brevis treatment; however oxygen consumption rates did not differ among treatments. These results suggest that severe blooms during the summer may reduce larval supply and serve as a potential bottleneck for new individuals recruiting into the fishery in years following a K. brevis bloom.


Assuntos
Braquiúros , Dinoflagellida , Toxinas Marinhas , Animais , Florida , Larva , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA