Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1347811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665815

RESUMO

Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 µm, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction.

2.
Biomater Adv ; 159: 213815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447383

RESUMO

Infection is one of the main issues connected to implantation of biomedical devices and represents a very difficult issue to tackle, for clinicians and for patients. This study aimed at tackling infection through antibacterial nanostructured silver coatings manufactured by Ionized Jet Deposition (IJD) for application as new and advanced coating systems for medical devices. Films composition and morphology depending on deposition parameters were investigated and their performances evaluated by correlating these properties with the antibacterial and antibiofilm efficacy of the coatings, against Escherichia coli and Staphylococcus aureus strains and with their cytotoxicity towards human cell line fibroblasts. The biocompatibility of the coatings, the nanotoxicity, and the safety of the proposed approach were evaluated, for the first time, in vitro and in vivo by rat subcutaneous implant models. Different deposition times, corresponding to different thicknesses, were selected and compared. All silver coatings exhibited a highly homogeneous surface composed of nanosized spherical aggregates. All coatings having a thickness of 50 nm and above showed high antibacterial efficacy, while none of the tested options caused cytotoxicity when tested in vitro. Indeed, silver films impacted on bacterial strains viability and capability to adhere to the substrate, in a thickness-dependent manner. The nanostructure obtained by IJD permitted to mitigate the toxicity of silver, conferring strong antibacterial and anti-adhesive features, without affecting the coatings biocompatibility. At the explant, the coatings were still present although they showed signs of progressive dissolution, compatible with the release of silver, but no cracking, delamination or in vivo toxicity was observed.


Assuntos
Nanoestruturas , Prata , Humanos , Ratos , Animais , Prata/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli
3.
J Mater Chem B ; 12(8): 2083-2098, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38284627

RESUMO

Calcium phosphates are widely studied in orthopedics and dentistry, to obtain biomimetic and antibacterial implants. However, the multi-substituted composition of mineralized tissues is not fully reproducible from synthetic procedures. Here, for the first time, we investigate the possible use of a natural, fluorapatite-based material, i.e., Lingula anatina seashell, resembling the composition of bone and enamel, as a biomaterial source for orthopedics and dentistry. Indeed, thanks to its unique mineralization process and conditions, L. anatina seashell is among the few natural apatite-based shells, and naturally contains ions having possible antibacterial efficacy, i.e., fluorine and zinc. After characterization, we explore its deposition by ionized jet deposition (IJD), to obtain nanostructured coatings for implantable devices. For the first time, we demonstrate that L. anatina seashells have strong antibacterial properties. Indeed, they significantly inhibit planktonic growth and cell adhesion of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The two strains show different susceptibility to the mineral and organic parts of the seashells, the first being more susceptible to zinc and fluorine in the mineral part, and the second to the organic (chitin-based) component. Upon deposition by IJD, all films exhibit a nanostructured morphology and sub-micrometric thickness. The multi-doped, complex composition of the target is maintained in the coating, demonstrating the feasibility of deposition of coatings starting from biogenic precursors (seashells). In conclusion, Lingula seashell-based coatings are non-cytotoxic with strong antimicrobial capability, especially against Gram-positive strains, consistently with their higher susceptibility to fluorine and zinc. Importantly, these properties are improved compared to synthetic fluorapatite, showing that the films are promising for antimicrobial applications.


Assuntos
Exoesqueleto , Anti-Infecciosos , Animais , Biomimética , Flúor , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Apatitas/farmacologia , Zinco/farmacologia , Odontologia
4.
Biofabrication ; 15(4)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552982

RESUMO

Age-related musculoskeletal disorders, including osteoporosis, are frequent and associated with long lasting morbidity, in turn significantly impacting on healthcare system sustainability. There is therefore a compelling need to develop reliable preclinical models of disease and drug screening to validate novel drugs possibly on a personalized basis, without the need ofin vivoassay. In the context of bone tissue, although the osteocyte (Oc) network is a well-recognized therapeutic target, currentin vitropreclinical models are unable to mimic its physiologically relevant and highly complex structure. To this purpose, several features are needed, including an osteomimetic extracellular matrix, dynamic perfusion, and mechanical cues (e.g. shear stress) combined with a three-dimensional (3D) culture of Oc. Here we describe, for the first time, a high throughput microfluidic platform based on 96-miniaturized chips for large-scale preclinical evaluation to predict drug efficacy. We bioengineered a commercial microfluidic device that allows real-time visualization and equipped with multi-chips by the development and injection of a highly stiff bone-like 3D matrix, made of a blend of collagen-enriched natural hydrogels loaded with hydroxyapatite nanocrystals. The microchannel, filled with the ostemimetic matrix and Oc, is subjected to passive perfusion and shear stress. We used scanning electron microscopy for preliminary material characterization. Confocal microscopy and fluorescent microbeads were used after material injection into the microchannels to detect volume changes and the distribution of cell-sized objects within the hydrogel. The formation of a 3D dendritic network of Oc was monitored by measuring cell viability, evaluating phenotyping markers (connexin43, integrin alpha V/CD51, sclerostin), quantification of dendrites, and responsiveness to an anabolic drug. The platform is expected to accelerate the development of new drug aimed at modulating the survival and function of osteocytes.


Assuntos
Osso e Ossos , Osteócitos , Colágeno/química , Hidrogéis , Dispositivos Lab-On-A-Chip
5.
J Biol Eng ; 17(1): 18, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879323

RESUMO

BACKGROUND: Bacterial colonisation on implantable device surfaces is estimated to cause more than half of healthcare-associated infections. The application of inorganic coatings onto implantable devices limits/prevents microbial contaminations. However, reliable and high-throughput deposition technologies and experimental trials of metal coatings for biomedical applications are missing. Here, we propose the combination of the Ionized Jet Deposition (IJD) technology for metal-coating application, with the Calgary Biofilm Device (CBD) for high-throughput antibacterial and antibiofilm screening, to develop and screen novel metal-based coatings. RESULTS: The films are composed of nanosized spherical aggregates of metallic silver or zinc oxide with a homogeneous and highly rough surface topography. The antibacterial and antibiofilm activity of the coatings is related with the Gram staining, being Ag and Zn coatings more effective against gram-negative and gram-positive bacteria, respectively. The antibacterial/antibiofilm effect is proportional to the amount of metal deposited that influences the amount of metal ions released. The roughness also impacts the activity, mostly for Zn coatings. Antibiofilm properties are stronger on biofilms developing on the coating than on biofilms formed on uncoated substrates. This suggests a higher antibiofilm effect arising from the direct contact bacteria-coating than that associated with the metal ions release. Proof-of-concept of application to titanium alloys, representative of orthopaedic prostheses, confirmed the antibiofilm results, validating the approach. In addition, MTT tests show that the coatings are non-cytotoxic and ICP demonstrates that they have suitable release duration (> 7 days), suggesting the applicability of these new generation metal-based coatings for the functionalization of biomedical devices. CONCLUSIONS: The combination of the Calgary Biofilm Device with the Ionized Jet Deposition technology proved to be an innovative and powerful tool that allows to monitor both the metal ions release and the surface topography of the films, which makes it suitable for the study of the antibacterial and antibiofilm activity of nanostructured materials. The results obtained with the CBD were validated with coatings on titanium alloys and extended by also considering the anti-adhesion properties and biocompatibility. In view of upcoming application in orthopaedics, these evaluations would be useful for the development of materials with pleiotropic antimicrobial mechanisms.

6.
Nanomaterials (Basel) ; 12(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144951

RESUMO

Aqueous solutions of diammonium hydrogen phosphate (DAP) have been recently proposed for consolidation of archeological bones, as an alternative to traditional products. Here, we investigated several routes to improve the performance of the DAP-based treatment, namely increasing the DAP concentration, adding calcium ions and adding ethanol to the DAP solution. Archaeological bones dated to about 1-0.8 million years ago were used for the tests. After preliminary screening by FTIR microscopy and FEG-SEM among different formulations, confirming the formation of new hydroxyapatite phases, the most promising formulation was selected, namely a 3 M DAP solution. The strengthening ability of this formulation was systematically compared to that of the most widely used commercial consolidant, namely Paraloid B72. The performance of the two treatments was evaluated in terms of Knoop and Vickers microhardness, resistance to scratch and resistance to material loss by peeling off. The results of the study show that the DAP treatment was able to improve the bone surface properties and also the resistance to material loss by peeling off, which is more dependent on in-depth consolidation. Paraloid B72 led to the formation of a layer of acrylic resin on the bone surface, which influenced the mechanical tests. Nonetheless, Paraloid B72 was able to penetrate in depth and substantially decrease the material loss by peeling off, even more effectively than DAP. The results of this study indicate that the potential of the DAP treatment for bone consolidation is confirmed.

7.
Sci Total Environ ; 850: 157804, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932861

RESUMO

Epilithic bacteria play a fundamental role in the conservation of cultural heritage (CH) materials. On stones, bacterial communities cause both degradation and bioprotection actions. Bronze biocorrosion in non-burial conditions is rarely studied. Only few studies have examined the relationship between bacteria communities and the chemical composition of patinas (surface degradation layers). A better comprehension of bacterial communities growing on our CH is fundamental not only to understand the related decay mechanisms but also to foresee possible shifts in their composition due to climate change. The present study aims at (1) characterizing bacterial communities on bronze and marble statues; (2) evaluating the differences in bacterial communities' composition and abundance occurring between different patina types on different statues; and (3) providing indications about a representative bacterial community which can be used in laboratory tests to better understand their influence on artefact decay. Chemical and biological characterization of different patinas were carried out by sampling bronze and marble statues in Bologna and Ravenna (Italy), using EDS/Raman spectroscopy and MinION-based 16SrRNA sequencing. Significant statistical differences were found in bacterial composition between marble and bronze statues, and among marble patinas in different statues and in the same statue. Marble surfaces showed high microbial diversity and were characterized mainly by Cyanobacteria, Proteobacteria and Deinococcus-Thermus. Bronze patinas showed low taxa diversity and were dominated by copper-resistant Proteobacteria. The copper biocidal effect is evident in greenish marble areas affected by the leaching of copper salts, where the bacterial community is absent. Here, Ca and Cu oxalates are present because of the biological reaction of living organisms to Cu ions, leading to metabolic product secretions, such as oxalic acid. Therefore, a better knowledge on the interaction between bacteria communities and patinas has been achieved.


Assuntos
Carbonato de Cálcio , Cobre , Artefatos , Bactérias , Carbonato de Cálcio/química , Cobre/química , Ácido Oxálico , Sais
8.
Antibiotics (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671256

RESUMO

Metal coatings represent good strategies to functionalize surfaces/devices and limit bacterial contamination/colonization thanks to their pleiotropic activity and their ability to prevent the biofilm formation. Here, we investigated the antibacterial and antibiofilm capacity of copper coatings deposited through the Ionized Jet Deposition (IJD) on the Calgary Biofilm Device (CBD) against the growth of two gram-negative and two gram-positive pathogenic strains. Three areas (i.e., (+)Cu, (++)Cu, and (+++)Cu based on the metal amount) on the CBD were obtained, presenting nanostructured coatings with high surface homogeneity and increasing dimensions of aggregates from the CBD periphery to the centre. The coatings in (++)Cu and (+++)Cu were efficient against the planktonic growth of the four pathogens. This antibacterial effect decreased in (+)Cu but was still significant for most of the pathogens. The antibiofilm efficacy was significant for all the strains and on both coated and uncoated surfaces in (+++)Cu, whereas in (++)Cu the only biofilms forming on the coated surfaces were inhibited, suggesting that the decrease of the metal on the coatings was associated to a reduced metal ion release. In conclusion, this work demonstrates that Cu coatings deposited by IJD have antibacterial and antibiofilm activity against a broad range of pathogens indicating their possible application to functionalize biomedical devices.

9.
Bioact Mater ; 6(8): 2629-2642, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34027240

RESUMO

Orthopedic infections pose severe societal and economic burden and interfere with the capability of the implanted devices to integrate in the host bone, thus significantly increasing implants failure rate. To address infection and promote integration, here nanostructured antibacterial and bioactive thin films are proposed, obtained, for the first time, by Ionized Jet Deposition (IJD) of silver-substituted tricalcium phosphate (Ag-TCP) targets on titanium. Coatings morphology, composition and mechanical properties are characterized and proof-of-concept of biocompatibility is shown. Antimicrobial efficacy is investigated against four Gram positive and Gram negative bacterial strains and against C. albicans fungus, by investigating the modifications in planktonic bacterial growth in the absence and presence of silver. Then, for all bacterial strains, the capability of the film to inhibit bacterial adhesion is also tested. Results indicate that IJD permits a fine control over films composition and morphology and deposition of films with suitable mechanical properties. Biological studies show a good efficacy against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis and against fungus Candida albicans, with evidences of efficacy against planktonic growth and significant reduction of bacterial cell adhesion. No cytotoxic effects are evidenced for equine adipose tissue derived mesenchymal stem cells (ADMSCs), as no reductions are caused to cells viability and no interference is assessed in cells differentiation towards osteogenic lineage, in the presence of silver. Instead, thanks to nanostructuration and biomimetic composition, tricalcium phosphate (TCP) coatings favor cells viability, also when silver-substituted. These findings show that silver-substituted nanostructured coatings are promising for orthopedic implant applications.

10.
Mater Sci Eng C Mater Biol Appl ; 123: 112031, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812646

RESUMO

The choice of the appropriate material having suitable compositional and morphological surface characteristics, is a crucial step in the development of orthopedic implants. The purpose of this paper is to elucidate, on this regard, the influence of two important hits, i.e., biogenic apatite with bone-like composition and nanostructured morphology, providing the evidence of the efficacy of nanostructured biogenic apatite coatings in favoring adhesion, growth, proliferation, and in vitro osteogenic differentiation of human mesenchymal stromal cells (hMSCs) isolated from the bone marrow. The specific features of this coating in terms of topographical and biochemical cues, obtained by Ionized Jet Deposition, are perceived by hMSCs, as suggested by changes in different morphologic parameters as Aspect Ratio or Elongation index, suggesting the impact exerted by the nanostructure on early adhesion events, cytoskeleton organization, and cells fate. In addition, the nanostructured CaP coating sustained the metabolic activity of the cells and facilitated the osteogenic differentiation of MSC by supporting the osteogenesis-related gene expression. These findings support the use of a combined approach between technological advancement and instructive surfaces, both from the topographical and the biochemical point of view, in order to manufacture smart biomaterials able to respond to different needs of the orthopedic practice.


Assuntos
Células-Tronco Mesenquimais , Nanoestruturas , Biomimética , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Osteogênese , Propriedades de Superfície , Titânio
11.
Materials (Basel) ; 11(4)2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617322

RESUMO

The present paper reviews the methods and the performance of in situ formation of calcium phosphates (CaP) for the conservation of materials belonging to cultural heritage. The core idea is to form CaP (ideally hydroxyapatite, HAP, the most stable CaP at pH > 4) by reaction between the substrate and an aqueous solution of a phosphate salt. Initially proposed for the conservation of marble and limestone, the treatment has been explored for a variety of different substrates, including sandstones, sulphated stones, gypsum stuccoes, concrete, wall paintings, archaeological bones and paper. First, the studies aimed at identifying the best treatment conditions (e.g., nature and concentration of the phosphate precursor, solution pH, treatment duration, ionic and organic additions to the phosphate solution, mineralogical composition of the new CaP phases) are summarized. Then, the treatment performance on marble and limestone is reviewed, in terms of protective and consolidating effectiveness, compatibility (aesthetic, microstructural and physical) and durability. Some pilot applications in real case studies are also reported. Recent research aimed at extending the phosphate treatment to other substrates is then illustrated. Finally, the strengths of the phosphate treatment are summarized, in comparison with alternative products, and some aspects needing future research are outlined.

12.
Materials (Basel) ; 11(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360789

RESUMO

To prevent soiling of marble exposed outdoors, the use of TiO2 nano-particles has been proposed in the literature by two main routes, both raising durability issues: (i) direct application to marble surface, with the risk of particle leaching by rainfall; (ii) particle incorporation into inorganic or organic coatings, with the risk of organic coating degradation catalyzed by TiO2 photoactivity. Here, we investigated the combination of nano-TiO2 and hydroxyapatite (HAP), previously developed for marble protection against dissolution in rain and mechanical consolidation. HAP-TiO2 combination was investigated by two routes: (i) sequential application of HAP followed by nano-TiO2 ("H+T"); (ii) simultaneous application by introducing nano-TiO2 into the phosphate solution used to form HAP ("HT"). The self-cleaning ability was evaluated before and after prolonged exposure to simulated rain. "H+T" and "HT" coatings exhibited much better resistance to nano-TiO2 leaching by rain, compared to TiO2 alone. In "H+T" samples, TiO2 nano-particles adhere better to HAP (having flower-like morphology and high specific surface area) than to marble. In "HT" samples, thanks to chemical bonds between nano-TiO2 and HAP, the particles are firmly incorporated in the HAP coating, which protects them from leaching by rain, without diminishing their photoactivity and without being degraded by them.

13.
Mater Sci Eng C Mater Biol Appl ; 74: 219-229, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254288

RESUMO

One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these procedures.


Assuntos
Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Materiais Biomiméticos/química , Regeneração Óssea , Durapatita/química , Humanos , Lasers , Gases em Plasma/química , Próteses e Implantes
14.
Sci Total Environ ; 412-413: 278-85, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22030245

RESUMO

The correlation between stone microstructural characteristics and material degradation (in terms of weight loss), in given environmental conditions, was investigated. Seven lithotypes, having very different microstructural characteristics, were used. Four acidic aqueous solutions were prepared to simulate acid rain (two adding H(2)SO(4) and two adding HNO(3) to deionized water, in order to reach, for each acid, pH values of 5.0 and 4.0), and deionized water at pH=5.6 was used to simulate clean rain. Stone samples were then immersed in such aqueous solutions, the surface alteration being periodically inspected and the weight loss periodically measured. After 14 days of immersion, a good correlation was found between weight loss and the product of carbonate content and specific surface area in the starting materials. This was explained considering that this product accounts for the weight loss owing to the sample's fraction actually composed of calcite (the most soluble fraction) and the effective surface area exposed to dissolving solution (which depends on stone porosity and pore size distribution). Such correlation between stone microstructure and degradation may be useful for comparing the durability of different lithotypes, in given environmental conditions, and quantitatively predicting the weight loss of a lithotype, compared to another one. Hence, the correlation found in this study may be used to specifically tailor to various stone types, with different microstructural characteristics, some results that have been calculated in literature for specific stone types and then proposed as possibly representative for a broad category of stones with similar characteristics.


Assuntos
Chuva Ácida/efeitos adversos , Poluição do Ar/efeitos adversos , Materiais de Construção/análise , Monitoramento Ambiental/métodos , Carbonato de Cálcio/química , Ácido Nítrico/química , Dióxido de Silício/química , Ácidos Sulfúricos/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA