Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269127

RESUMO

Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.


Assuntos
Interações Hospedeiro-Patógeno/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Replicação Viral/genética , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/metabolismo , Células Vegetais/metabolismo , Células Vegetais/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esteróis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
2.
PLoS Pathog ; 14(5): e1007028, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29746582

RESUMO

Positive-strand RNA viruses assemble numerous membrane-bound viral replicase complexes within large replication compartments to support their replication in infected cells. Yet the detailed mechanism of how given subcellular compartments are subverted by viruses is incompletely understood. Although, Tomato bushy stunt virus (TBSV) uses peroxisomal membranes for replication, in this paper, we show evidence that the ER-resident SNARE (soluble NSF attachment protein receptor) proteins play critical roles in the formation of active replicase complexes in yeast model host and in plants. Depletion of the syntaxin 18-like Ufe1 and Use1, which are components of the ER SNARE complex in the ERAS (ER arrival site) subdomain, in yeast resulted in greatly reduced tombusvirus accumulation. Over-expression of a dominant-negative mutant of either the yeast Ufe1 or the orthologous plant Syp81 syntaxin greatly interferes with tombusvirus replication in yeast and plants, thus further supporting the role of this host protein in tombusvirus replication. Moreover, tombusvirus RNA replication was low in cell-free extracts from yeast with repressed Ufe1 or Use1 expression. We also present evidence for the mislocalization of the tombusviral p33 replication protein to the ER membrane in Ufe1p-depleted yeast cells. The viral p33 replication protein interacts with both Ufe1p and Use1p and co-opts them into the TBSV replication compartment in yeast and plant cells. The co-opted Ufe1 affects the virus-driven membrane contact site formation, sterol-enrichment at replication sites, recruitment of several pro-viral host factors and subversion of the Rab5-positive PE-rich endosomes needed for robust TBSV replication. In summary, we demonstrate a critical role for Ufe1 and Use1 SNARE proteins in TBSV replication and propose that the pro-viral functions of Ufe1 and Use1 are to serve as assembly hubs for the formation of the extensive TBSV replication compartments in cells. Altogether, these findings point clearly at the ERAS subdomain of ER as a critical site for the biogenesis of the TBSV replication compartment.


Assuntos
Proteínas SNARE/metabolismo , Proteínas SNARE/fisiologia , Tombusvirus/fisiologia , Replicação do DNA , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Endossomos/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Membranas Mitocondriais/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/fisiologia , Proteínas Qc-SNARE/metabolismo , Proteínas Qc-SNARE/fisiologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Tombusvirus/genética , Tombusvirus/metabolismo , Tombusvirus/patogenicidade , Proteínas Virais/genética , Replicação Viral/fisiologia
3.
PLoS Pathog ; 12(2): e1005440, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26863541

RESUMO

RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions.


Assuntos
Actinas/metabolismo , Replicação do DNA/genética , Destrina/metabolismo , Replicação Viral , Interações Hospedeiro-Patógeno , RNA Viral/genética , Tombusvirus/genética , Proteínas Virais/genética , Montagem de Vírus/genética
4.
Mol Plant Microbe Interact ; 28(4): 379-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25584724

RESUMO

Although the plant hormone salicylic acid (SA) plays a central role in signaling resistance to viral infection, the underlying mechanisms are only partially understood. Identification and characterization of SA's direct targets have been shown to be an effective strategy for dissecting the complex SA-mediated defense signaling network. In search of additional SA targets, we previously developed two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SA-binding proteins (SABPs) from Arabidopsis. Using these approaches, we have now identified several members of the Arabidopsis glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein family, including two chloroplast-localized and two cytosolic isoforms, as SABPs. Cytosolic GAPDH is a well-known glycolytic enzyme; it also is an important host factor involved in the replication of Tomato bushy stunt virus (TBSV), a single-stranded RNA virus. Using a yeast cell-free extract, an in vivo yeast replication system, and plant protoplasts, we demonstrate that SA inhibits TBSV replication. SA does so by inhibiting the binding of cytosolic GAPDH to the negative (-)RNA strand of TBSV. Thus, this study reveals a novel molecular mechanism through which SA regulates virus replication.


Assuntos
Proteínas de Arabidopsis/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Ácido Salicílico/farmacologia , Tombusvirus/genética , Replicação Viral/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo
5.
PLoS Pathog ; 10(10): e1004388, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329172

RESUMO

Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication.


Assuntos
Membranas Mitocondriais/virologia , Esteróis/metabolismo , Tombusvirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Replicação do DNA/genética , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae
6.
Front Plant Sci ; 5: 383, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157258

RESUMO

To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF) are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae), which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5'-3' exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as "guardians" of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones.

7.
Virology ; 448: 43-54, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24314635

RESUMO

Replication of tombusviruses and other plus-strand RNA viruses depends on several host factors that are recruited into viral replicase complexes. Previous studies have shown that eukaryotic translation elongation factor 1A (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. In this paper, we show that methylation of eEF1A by the METTL10-like See1p methyltransferase is required for tombusvirus and unrelated nodavirus RNA replication in yeast model host. Similar to the effect of SEE1 deletion, yeast expressing only a mutant form of eEF1A lacking the 4 known lysines subjected to methylation supported reduced TBSV accumulation. We show that the half-life of several viral replication proteins is decreased in see1Δ yeast or when a mutated eEF1A was expressed as a sole source for eEF1A. Silencing of the plant ortholog of See1 methyltransferase also decreased tombusvirus RNA accumulation in Nicotiana benthamiana.


Assuntos
Metiltransferases/metabolismo , Nicotiana/enzimologia , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Tombusvirus/fisiologia , Replicação Viral , Interações Hospedeiro-Patógeno , Metilação , Metiltransferases/genética , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Plantas/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Virology ; 447(1-2): 21-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24210096

RESUMO

Positive-stranded RNA viruses subvert subcellular membranes to built viral replicases complexes (VRCs) in infected cells. Tombusviruses use peroxisomal membranes for the assembly of their VRCs and they can efficiently switch to the endoplasmic reticulum membrane in the absence of peroxisomes. In this paper, we show that the ER-resident Sec39p vesicular transport protein is critical for the formation of active VRCs in yeast model host. Repression of Sec39p expression in yeast or in plants resulted in greatly reduced tombusvirus accumulation. Moreover, the purified tombusvirus replicase from Sec39p-depleted yeast cells showed low in vitro activity. Also, tombusvirus RNA replication was poor in cell-free extracts or in isolated ER membranes from yeast with repressed Sec39p expression. The tombusvirus p33 replication protein was mislocalized to the ER when Sec39p was depleted in yeast. Overall, Sec39p is the first peroxisomal biogenesis protein characterized that is critical for tombusvirus replication in yeast and plants.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Nicotiana/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/fisiologia , Replicação Viral , Saccharomyces cerevisiae/virologia
9.
J Virol ; 87(3): 1800-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192874

RESUMO

Replication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication of Tomato bushy stunt virus (TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger in Saccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that the in vitro activity of the purified tombusvirus replicase from gef1Δ yeast was low and that the in vitro assembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained from gef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu(2+) metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu(2+) ions on the in vitro assembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion of CCC2 copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication in Nicotiana benthamiana protoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu(2+) ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.


Assuntos
Canais de Cloreto/metabolismo , Cobre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Tombusvirus/fisiologia , Replicação Viral , Canais de Cloreto/genética , Deleção de Genes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/genética , Nicotiana/virologia
10.
Methods Mol Biol ; 894: 345-57, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22678591

RESUMO

The identification of small molecule inhibitors of plant virus RNA replication is useful to develop antiviral drugs and to dissect various steps in the replication process. Moreover, small molecule inhibitors could be effective tools to study similarities in replication strategies of various RNA viruses. By using Tomato bushy stunt virus (TBSV), we tested the effect of various inhibitors of host factors known to facilitate TBSV replication as well as acridine and phenanthridine derivatives, which are known anti-prion compounds, on TBSV replication. In this chapter, the methodology used to identify the direct targets of the chemicals during the different steps of replication of TBSV is described.


Assuntos
Acridinas/farmacologia , Fenantridinas/farmacologia , Tombusvirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Doenças das Plantas/virologia , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA Viral/genética , Tombusvirus/genética , Tombusvirus/fisiologia , Replicação Viral/genética
11.
J Virol ; 86(17): 9384-95, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718827

RESUMO

To identify host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model positive-stranded RNA virus, we overexpressed 5,500 yeast proteins individually in Saccharomyces cerevisiae, which supports TBSV replication. In total, we identified 141 host proteins, and overexpression of 40 of those increased and the remainder decreased the accumulation of a TBSV replicon RNA. Interestingly, 36 yeast proteins were identified previously by various screens, greatly strengthening the relevance of these host proteins in TBSV replication. To validate the results from the screen, we studied the effect of protein kinase C1 (Pkc1), a conserved host kinase involved in many cellular processes, which inhibited TBSV replication when overexpressed. Using a temperature-sensitive mutant of Pkc1p revealed a high level of TBSV replication at a semipermissive temperature, further supporting the idea that Pkc1p is an inhibitor of TBSV RNA replication. A direct inhibitory effect of Pkc1p was shown in a cell-free yeast extract-based TBSV replication assay, in which Pkc1p likely phosphorylates viral replication proteins, decreasing their abilities to bind to the viral RNA. We also show that cercosporamide, a specific inhibitor of Pkc-like kinases, leads to increased TBSV replication in yeast, in plant single cells, and in whole plants, suggesting that Pkc-related pathways are potent inhibitors of TBSV in several hosts.


Assuntos
Regulação para Baixo , Nicotiana/enzimologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteína Quinase C/metabolismo , Proteoma/metabolismo , RNA Viral/genética , Tombusvirus/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteína Quinase C/genética , Proteoma/genética , RNA Viral/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Nicotiana/virologia , Tombusvirus/fisiologia , Replicação Viral
12.
PLoS Pathog ; 7(12): e1002438, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22194687

RESUMO

Host factors are recruited into viral replicase complexes to aid replication of plus-strand RNA viruses. In this paper, we show that deletion of eukaryotic translation elongation factor 1Bgamma (eEF1Bγ) reduces Tomato bushy stunt virus (TBSV) replication in yeast host. Also, knock down of eEF1Bγ level in plant host decreases TBSV accumulation. eEF1Bγ binds to the viral RNA and is one of the resident host proteins in the tombusvirus replicase complex. Additional in vitro assays with whole cell extracts prepared from yeast strains lacking eEF1Bγ demonstrated its role in minus-strand synthesis by opening of the structured 3' end of the viral RNA and reducing the possibility of re-utilization of (+)-strand templates for repeated (-)-strand synthesis within the replicase. We also show that eEF1Bγ plays a synergistic role with eukaryotic translation elongation factor 1A in tombusvirus replication, possibly via stimulation of the proper positioning of the viral RNA-dependent RNA polymerase over the promoter region in the viral RNA template.These roles for translation factors during TBSV replication are separate from their canonical roles in host and viral protein translation.


Assuntos
Fator 1 de Elongação de Peptídeos/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Tombusvirus/metabolismo , Técnicas de Silenciamento de Genes , Mutagênese/genética , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/genética , Replicação Viral/fisiologia
13.
Virology ; 415(2): 141-52, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21561636

RESUMO

Replication of plus-strand RNA viruses depends on lipids present in cellular membranes. Recent genome-wide screens have revealed that eight phospholipid biosynthesis genes affected the replication of Tomato bushy stunt virus (TBSV) in yeast model host. To test the importance of phospholipids in TBSV replication, we studied one of the identified genes, namely INO2, which forms a heterodimer with Ino4, and is a transcription activator involved in regulation of phospholipid biosynthesis. Deletion of INO2, or double deletion of INO2/INO4, reduced TBSV replication and inhibited the activity of the viral replicase complex. In addition, the stability of the viral replication protein is decreased as well as the localization pattern of the viral protein changed dramatically in ino2∆ino4∆ yeast. Over-expression of Opi1, a repressor of Ino2 and phospholipid biosynthesis, also inhibited TBSV RNA accumulation. In contrast, over-expression of Ino2 stimulated TBSV RNA accumulation. We also observed an inhibitory effect on Flock house virus (FHV) replication and the reduced stability of the FHV replication protein in ino2∆ino4∆ yeast. These data are consistent with the important role of phospholipids in RNA virus replication.


Assuntos
Regulação para Baixo , Fosfolipídeos/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Tombusvirus/enzimologia , Proteínas Virais/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estabilidade Proteica , Transporte Proteico , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/química , Tombusvirus/genética , Tombusvirus/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
14.
Virology ; 409(2): 338-47, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21071052

RESUMO

Small plus-stranded RNA viruses do not code for RNA helicases that would facilitate the proper folding of viral RNAs during replication. Instead, these viruses might use RNA chaperones as shown here for the essential p33 replication protein of Tomato bushy stunt virus (TBSV). In vitro experiments demonstrate that the purified recombinant p33 promotes strand separation of a DNA/RNA duplex. In addition, p33 renders dsRNA templates sensitive to single-strand specific S1 nuclease, suggesting that p33 can destabilize highly structured RNAs. We also demonstrate that the RNA chaperone activity of p33 facilitates self-cleavage by a ribozyme in vitro. In addition, purified p33 facilitates in vitro RNA synthesis on double-stranded (ds)RNA templates up to 5-fold by a viral RNA-dependent RNA polymerase. We propose that the RNA chaperone activity of p33 facilitates the initiation of plus-strand synthesis as well as affects RNA recombination. Altogether, the TBSV RNA chaperone might perform similar biological functions to the helicases of other RNA viruses with much larger coding capacity.


Assuntos
Chaperonas Moleculares/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Tombusvirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Modelos Biológicos , Proteínas Recombinantes/metabolismo
15.
Viruses ; 2(11): 2436-42, 2010 11.
Artigo em Inglês | MEDLINE | ID: mdl-21994625

RESUMO

Positive-stranded RNA (+RNA) viruses exploit host cell machinery by subverting host proteins and membranes and altering cellular pathways during infection. To achieve robust replication, some +RNA viruses, such as poliovirus (PV), build special intracellular compartments, called viral replication organelles. A recent work from the Altan-Bonnett laboratory [1] gave new insights into the formation of poliovirus replication organelles, which are unique subcellular structures containing many individual replication complexes as a result of dynamic cellular membrane remodeling.

16.
J Virol ; 84(5): 2270-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20015981

RESUMO

The replication of plus-strand RNA viruses depends on subcellular membranes. Recent genome-wide screens have revealed that the sterol biosynthesis genes ERG25 and ERG4 affected the replication of Tomato bushy stunt virus (TBSV) in a yeast model host. To further our understanding of the role of sterols in TBSV replication, we demonstrate that the downregulation of ERG25 or the inhibition of the activity of Erg25p with an inhibitor (6-amino-2-n-pentylthiobenzothiazole; APB) leads to a 3- to 5-fold reduction in TBSV replication in yeast. In addition, the sterol biosynthesis inhibitor lovastatin reduced TBSV replication by 4-fold, confirming the importance of sterols in viral replication. We also show reduced stability for the p92(pol) viral replication protein as well as a decrease in the in vitro activity of the tombusvirus replicase when isolated from APB-treated yeast. Moreover, APB treatment inhibits TBSV RNA accumulation in plant protoplasts and in Nicotiana benthamiana leaves. The inhibitory effect of APB on TBSV replication can be complemented by exogenous stigmasterol, the main plant sterol, suggesting that sterols are required for TBSV replication. The silencing of SMO1 and SMO2 genes, which are orthologs of ERG25, in N. benthamiana reduced TBSV RNA accumulation but had a lesser inhibitory effect on the unrelated Tobacco mosaic virus, suggesting that various viruses show different levels of dependence on sterol biosynthesis for their replication.


Assuntos
Nicotiana/metabolismo , Nicotiana/virologia , Esteróis/biossíntese , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Colesterol/análogos & derivados , Colesterol/metabolismo , Inibidores Enzimáticos/metabolismo , Inativação Gênica , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Lovastatina/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Fitosteróis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estigmasterol/metabolismo , Tiazóis/metabolismo , Nicotiana/citologia , Tombusvirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
PLoS One ; 4(10): e7376, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19823675

RESUMO

BACKGROUND: Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV), a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ) and quinacrine (QC), which are active against prion-based diseases. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect on multiple steps, including: (i) inhibition of the selective binding of the p33 replication protein to the viral RNA template, which is required for recruitment of viral RNA for replication; (ii) reduction of minus-strand synthesis by the tombusvirus replicase; and (iii) inhibition of translation of the uncapped TBSV genomic RNA. In contrast, CPZ was shown to inhibit the in vitro assembly of the TBSV replicase, likely due to binding of CPZ to intracellular membranes, which are important for RNA virus replication. CONCLUSION/SIGNIFICANCE: Since we found that CPZ was also an effective inhibitor of other plant viruses, including Tobacco mosaic virus and Turnip crinkle virus, it seems likely that CPZ has a broad range of antiviral activity. Thus, these inhibitors constitute effective tools to study similarities in replication strategies of various RNA viruses.


Assuntos
Acridinas/química , Doenças Priônicas/tratamento farmacológico , Príons/genética , Vírus de RNA/genética , RNA/química , Replicação Viral , Antivirais/farmacologia , Química Farmacêutica/métodos , Clorpromazina/farmacologia , Desenho de Fármacos , Modelos Genéticos , Vírus de Plantas/metabolismo , Quinacrina/farmacologia , Tombusvirus/genética , Proteínas Virais/metabolismo
18.
Virology ; 379(2): 294-305, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18684480

RESUMO

Replication of Tomato bushy stunt virus (TBSV) RNA takes place on the cytosolic membrane surface of peroxisomes in plants and in yeast, a model host. To identify the host proteins involved in assisting the peroxisomal localization of the tombusvirus p33 replication protein, we tested if p33 could bind directly to yeast proteins involved in peroxisomal transport in vitro. This work has led to the demonstration of Pex19p-p33 interaction via pull-down and co-purification experiments. Pex19p was also detected in the tombusvirus replicase after protein cross-linking, suggesting that Pex19p transiently binds to the replicase as could be expected from a transporter. To validate the importance of Pex19p-p33 interaction in TBSV replication in yeast, we re-targeted Pex19p to the mitochondria, which resulted in the re-distribution of a large fraction of p33 to the mitochondria. The expression of the mitochondrial-targeted Pex19p inhibited TBSV RNA accumulation by 2-4-fold in vivo and reduced the in vitro activity of the tombusvirus replicase by 80%. These data support the model that Pex19p is a cellular transporter for localization of p33 replication protein to the host peroxisomal membranes.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Peroxissomos/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/fisiologia , Proteínas Virais/fisiologia , Sequência de Bases , Reagentes de Ligações Cruzadas , Primers do DNA/genética , DNA Fúngico/genética , Formaldeído , Interações Hospedeiro-Patógeno , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Modelos Biológicos , Ligação Proteica , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Tombusvirus/genética , Tombusvirus/patogenicidade , Proteínas Virais/isolamento & purificação , Replicação Viral
19.
Genome ; 50(7): 668-88, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17893745

RESUMO

A novel set of informative microsatellite markers for pepper (Capsicum annuum L.) is provided. Screening of approximately 168 000 genomic clones and 23 174 public database entries resulted in a total of 411 microsatellite-containing sequences that could be used for primer design and functional testing. A set of 154 microsatellite markers originated from short-insert genomic libraries and 257 markers originated from database sequences. Of those markers, 147 (61 from genomic libraries and 86 from database sequences) showed specific and scoreable amplification products and detected polymorphisms between at least 2 of the 33 lines of a test panel consisting of cultivated and wild Capsicum genotypes. These informative markers were subsequently surveyed for allelic variation and information content. The usefulness of the new markers for diversity and taxonomic studies was demonstrated by the construction of consistent phylogenetic trees based on the microsatellite polymorphisms. Conservation of a subset of microsatellite loci in pepper, tomato, and potato was proven by cross-species amplification and sequence comparisons. For several informative pepper microsatellite markers, homologous expressed sequence tag (EST) counterparts could be identified in these related species that also carry microsatellite motifs. Such orthologs can potentially be used as reference markers and common anchoring points on the genetic maps of different solanaceous species.


Assuntos
Capsicum/genética , Repetições de Microssatélites , Sequência de Bases , Capsicum/classificação , Cruzamentos Genéticos , DNA de Plantas/metabolismo , Genoma de Planta , Biblioteca Genômica , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA