Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6716, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509345

RESUMO

Cement is the most widely used construction material due to its strength and affordability, but its production is energy intensive. Thus, the need to replace cement with widely available waste material such as incinerated black filter cake (IBFC) in order to reduce energy consumption and the associated CO2 emissions. However, because IBFC is a newly discovered cement replacement material, several parameters affecting the mechanical properties of IBFC-cement composite have not been thoroughly investigated yet. Thus, this work aims to investigate the impact of IBFC as a cement replacement and the addition of the calcifying bacterium Lysinibacillus sp. WH on the mechanical and self-healing properties of IBFC cement pastes. The properties of the IBFC-cement pastes were assessed by determining compressive strength, permeable void, water absorption, cement hydration product, and self-healing property. Increases in IBFC replacement reduced the durability of the cement pastes. The addition of the strain WH to IBFC cement pastes, resulting in biocement, increased the strength of the IBFC-cement composite. A 20% IBFC cement-replacement was determined to be the ideal ratio for producing biocement in this study, with a lower void percentage and water absorption value. Adding strain WH decreases pore sizes, densifies the matrix in ≤ 20% IBFC biocement, and enhances the formation of calcium silicate hydrate (C-S-H) and AFm ettringite phases. Biogenic CaCO3 and C-S-H significantly increase IBFC composite strength, especially at ≤ 20% IBFC replacement. Moreover, IBFC-cement composites with strain WH exhibit self-healing properties, with bacteria precipitating CaCO3 crystals to bridge cracks within two weeks. Overall, this work provides an approach to produce a "green/sustainable" cement using biologically enabled self-healing characteristics.


Assuntos
Saccharum , Silicatos , Compostos de Cálcio , Cimentos Ósseos , Bactérias , Água
2.
Heliyon ; 9(11): e21798, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027948

RESUMO

The potential application of neural network (NN) models to estimate the compressive strength (CS) of cementitious composites under a variety of experimental settings and cement mixes was investigated. The data were extensively collected from previous literature, and the bootstrap resampling tests were applied to estimate the statistics of the parameter correlations. We find that the NN model that involves the coarse and fine natural aggregates (CA and FA), superplasticizer (SP) and recycled plastics (RP) as the features can accurately predict the CS (R2 ∼ 0.9), without the need to specify the type of SP and the structure of RP in advance. The developed NN model holds promise for revealing the global dependency of CS on these parameters. It suggested that increasing 100 kg/m3 of CA could increase CS by ∼4 MPa, but the usage of CA more than 700 kg/m3 could negatively affect CS. How the CS varying with FA is apparently nonlinear. Within the optimum limit, adding 1 kg/m3 of SP could enhance the CS by ∼2 MPa. Contrarily, additional 1 kg/m3 of RP results in a decrease of ∼0.2 MPa of CS. The mixture-type independent models developed here would broaden our understanding of the global influential-sensitivity among these variables and help save cost and time in the industrial applications.

3.
Sci Rep ; 12(1): 7026, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488065

RESUMO

This study investigated Microbially Induced Calcite Precipitation (MICP) technology to improve the mechanical properties of cementitious composites containing incinerated sugarcane filter cake (IFC) using a calcifying bacterium Lysinibacillus sp. WH. Both IFC obtained after the first and second clarification processes, referred to as white (IWFC) and black (IBFC), were experimented. This is the first work to investigate the use of IBFC as a cement replacement. According to the X-ray fluorescence (XRF) results, the main element of IWFC and IBFC was CaO (91.52%) and SiO2 (58.80%), respectively. This is also the first work to investigate the use of IBFC as a cement replacement. We found that the addition of strain WH could further enhance the strength of both cementitious composites up to ~ 31%, while reduced water absorption and void. Microstructures of the composites were visualized using a scanning electron microscope (SEM). The cement hydration products were determined using X-ray diffraction (XRD) followed by Rietveld analysis. The results indicated that biogenic CaCO3 was the main composition in enhancing strength of the IBFC composite, whereas induce tricalcium silicate (C3S) formation promoting the strength of IWFC composite. This work provided strong evidence that the mechanical properties of the cementitious composites could be significantly improved through the application of MICP. In fact, the strength of IFC-based cementitious composites after boosting by strain WH is only 10% smaller than that of the conventional Portland cement. While using IFC as a cement substitute is a greener way to produce environmentally friendly materials, it also provides a solution to long-term agro-industrial waste pollution problems.


Assuntos
Saccharum , Cimentos Ósseos , Carbonato de Cálcio , Materiais de Construção , Grão Comestível , Silicatos/química , Dióxido de Silício
4.
Heliyon ; 7(5): e06967, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027172

RESUMO

Precast concrete system has been widely used in modern day constructions due to its high efficiency in both production time and cost. However, because of the way it is constructed (with flat and dense surface), problems with sound reflection and transmission often exist. It is known that increasing of damping property of materials can reduce the transmission of impact sound and vibration which could lead to an improvement in sound insulation performance. In this study, a type of Viscoelastic Polymer Sheet (VPS) was introduced and attached to concrete precast panels with an aim to improve damping property of precast concrete panels. Seven precast concrete specimens with various patterns and attachment position of VPS were prepared. Effect of patterns and locations of attaching VPS on damping property are investigated and discussed.

5.
Heliyon ; 5(9): e02513, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31687601

RESUMO

This study presents the properties of a recycled aggregate geopolymer mortar made with a blend of high-calcium fly ash (HCF) and low-calcium fly ash (LCF). An experimental study was divided into two series. In series I, an effort was made to produce a more durable HCF geopolymer by partially replacing a portion of the HCF with LCF. A mortar with a 50:50 weight blend of HCF and LCF provided a high early strength and showed excellent potential in an acidic environment. In series II, recycled aggregate was used in the LCF-blended HCF geopolymer mortar. The results showed that the compressive strength of the geopolymer mortar decreased with an increase in the recycled aggregate content. The results also indicated that application of the mortar made with recycled aggregate under aggressive conditions should be avoided. However, a mixture with 25% recycled aggregate showed a compressive strength similar to that of the control mixture containing 100% natural aggregate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA