Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
ACS Chem Biol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835147

RESUMO

Superresolution microscopy (SR microscopy) of protein-protein interactions (PPIs) occurring in subcellular structures is essential for understanding cellular functions. However, a powerful and useful technology for SR microscopy of PPIs remains elusive. Here, we develop a highly efficient photoconvertible fluorescent probe, named split-Dendra2, for SR microscopy of PPIs in the cell. We found that split-Dendra2 enables a highly efficient detection of PPIs, making it possible to perform SR microscopy of PPIs with high spatial resolution and high image reconstruction fidelity. We demonstrate the utility of split-Dendra2 by visualizing PPIs occurring in small subcellular structures at the superresolution, such as clathrin-coated pits and focal adhesions, which cannot be visualized by the existing tools. Split-Dendra2 offers a powerful and useful tool that greatly expands the possibility of SR microscopy and can contribute to revealing the function of PPIs at the nanoscale resolution.

2.
Methods Mol Biol ; 2808: 35-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743361

RESUMO

Mononegaviruses are promising tools as oncolytic and transgene vectors for gene therapy and regenerative medicine. However, when mononegaviruses are used for therapeutic applications, the viral activity must be strictly controlled due to concerns about toxicity and severe side effects. With this technology, mononegavirus vectors can be grown where they are intended and can be easily removed when they are no longer needed. In particular, a photoswitch protein called Magnet (consisting of two magnet domains) is incorporated into the hinge region between the connector and methyltransferase domains of the mononegavirus polymerase protein (L protein) to disrupt the L protein functions. Blue light (470 ± 20 nm) irradiation causes the dimerization of the two magnet domains, and the L protein is restored to activity, allowing viral gene expression and virus replication. Since the magnet domains' dimerization is reversible, viral gene expression and replication cease when blue light irradiation is stopped.


Assuntos
Regulação Viral da Expressão Gênica , Replicação Viral , Replicação Viral/genética , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Luz , Animais , Vetores Genéticos/genética
3.
Bio Protoc ; 13(11): e4685, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37323637

RESUMO

Gene deletion is one of the standard approaches in genetics to investigate the roles and functions of target genes. However, the influence of gene deletion on cellular phenotypes is usually analyzed sometime after the gene deletion was introduced. Such lags from gene deletion to phenotype evaluation could select only the fittest fraction of gene-deleted cells and hinder the detection of potentially diverse phenotypic consequences. Therefore, dynamic aspects of gene deletion, such as real-time propagation and compensation of deletion effects on cellular phenotypes, still need to be explored. To resolve this issue, we have recently introduced a new method that combines a photoactivatable Cre recombination system and microfluidic single-cell observation. This method enables us to induce gene deletion at desired timings in single bacterial cells and to monitor their dynamics for prolonged periods. Here, we detail the protocol for estimating the fractions of gene-deleted cells based on a batch-culture assay. The duration of blue light exposure significantly affects the fractions of gene-deleted cells. Therefore, gene-deleted and non-deleted cells can coexist in a cellular population by adjusting the duration of blue light exposure. Single-cell observations under such illumination conditions allow the comparison of temporal dynamics between gene-deleted and non-deleted cells and unravel phenotypic dynamics provoked by gene deletion.

4.
Microbiol Immunol ; 67(4): 204-209, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609846

RESUMO

Bovine parainfluenza virus type 3 (BPIV3) is a promising vaccine vector against various respiratory virus infections, including the human PIV3, respiratory syncytial virus, and severe acute respiratory syndrome-coronavirus 2 infections. In this study, we combined the Magnet system and reverse genetic approach to generate photocontrollable BPIV3. An optically controllable Magnet gene was inserted into the H2 region of the BPIV3 large protein gene, which encodes an RNA-dependent RNA polymerase. The generated photocontrollable BPIV3 grew in specific regions of the cell sheet only when illuminated with blue light, suggesting that spatiotemporal control can aid in safe clinical applications of BPIV3.


Assuntos
COVID-19 , Vírus Sincicial Respiratório Humano , Animais , Bovinos , Humanos , Vírus da Parainfluenza 3 Humana/genética , Linhagem Celular , Replicação Viral , Vírus da Parainfluenza 3 Bovina/genética
5.
Methods Mol Biol ; 2577: 229-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36173577

RESUMO

The CRISPR-Cpf1 also known as Cas12a is an RNA-guided endonuclease similar to CRISPR-Cas9. Combining the CRISPR-Cpf1 with optogenetics technology, we have engineered photoactivatable Cpf1 (paCpf1) to precisely control the genome sequence in a spatiotemporal manner. We also identified spontaneously activated split Cpf1 and thereby developed a potent dCpf1 split activator, which has the potential to activate endogenous target genes. Here we describe a method for optogenetic endogenous genome editing using paCpf1 in mammalian cells. Furthermore, we show a method for endogenous gene activation using dCpf1 split activator in mammalian cells and mice.


Assuntos
Endonucleases , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Endonucleases/metabolismo , Edição de Genes/métodos , Genoma , Mamíferos/metabolismo , Camundongos , RNA , Ativação Transcricional
6.
Nat Biotechnol ; 40(11): 1672-1679, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35697806

RESUMO

Red light penetrates deep into mammalian tissues and has low phototoxicity, but few optogenetic tools that use red light have been developed. Here we present MagRed, a red light-activatable photoswitch that consists of a red light-absorbing bacterial phytochrome incorporating a mammalian endogenous chromophore, biliverdin and a photo-state-specific binder that we developed using Affibody library selection. Red light illumination triggers the binding of the two components of MagRed and the assembly of split-proteins fused to them. Using MagRed, we developed a red light-activatable Cre recombinase, which enables light-activatable DNA recombination deep in mammalian tissues. We also created red light-inducible transcriptional regulators based on CRISPR-Cas9 that enable an up to 378-fold activation (average, 135-fold induction) of multiple endogenous target genes. MagRed will facilitate optogenetic applications deep in mammalian organisms in a variety of biological research areas.


Assuntos
Luz , Optogenética , Animais , Mamíferos
7.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535492

RESUMO

Genetic modifications, such as gene deletion and mutations, could lead to significant changes in physiological states or even cell death. Bacterial cells can adapt to diverse external stresses, such as antibiotic exposure, but can they also adapt to detrimental genetic modification? To address this issue, we visualized the response of individual Escherichia coli cells to deletion of the antibiotic resistance gene under chloramphenicol (Cp) exposure, combining the light-inducible genetic recombination and microfluidic long-term single-cell tracking. We found that a significant fraction (∼40%) of resistance-gene-deleted cells demonstrated a gradual restoration of growth and stably proliferated under continuous Cp exposure without the resistance gene. Such physiological adaptation to genetic modification was not observed when the deletion was introduced in 10 hr or more advance before Cp exposure. Resistance gene deletion under Cp exposure disrupted the stoichiometric balance of ribosomal large and small subunit proteins (RplS and RpsB). However, the balance was gradually recovered in the cell lineages with restored growth. These results demonstrate that bacterial cells can adapt even to lethal genetic modifications by plastically gaining physiological resistance. However, the access to the resistance states is limited by the environmental histories and the timings of genetic modification.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética
8.
Genesis ; 59(12): e23457, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687271

RESUMO

The Cre-loxP system has been widely used for specific DNA recombination which induces gene inactivation or expression. Recently, photoactivatable-Cre (PA-Cre) proteins have been developed as a tool for spatiotemporal control of the enzymatic activity of Cre recombinase. Here, we generated transgenic mice bearing a PA-Cre gene and systematically investigated the conditions of photoactivation for the PA-Cre in embryonic stem cells (ESCs) derived from the transgenic mice and in a simple mathematical model. Cre-mediated DNA recombination was induced in 16% of the PA-Cre ESCs by 6 hr continuous illumination. We show that repetitive pulsed illumination efficiently induced DNA recombination with low light energy as efficient as continuous illumination in the ESCs (96 ± 15% of continuous illumination when pulse cycle was 2 s), which was also supported by a minimal mathematical model. DNA recombination by the PA-Cre was also successfully induced in the transgenic mouse pre-implantation embryos under the developed conditions. These results suggest that strategies based on repetitive pulsed illumination are efficient for the activation of photoactivatable Cre and, possibly other photo-switchable proteins.


Assuntos
Células-Tronco Embrionárias/efeitos da radiação , Engenharia Genética , Integrases/genética , Recombinação Genética/efeitos da radiação , Animais , Blastocisto/efeitos da radiação , Células-Tronco Embrionárias/metabolismo , Integrases/efeitos da radiação , Luz , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/efeitos da radiação
9.
Methods Mol Biol ; 2312: 225-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228293

RESUMO

The CRISPR-Cas9 system offers targeted genome manipulation with simplicity. Combining the CRISPR-Cas9 with optogenetics technology, we have engineered photoactivatable Cas9 to precisely control the genome sequence in a spatiotemporal manner. Here we provide a detailed protocol for optogenetic genome editing experiments using photoactivatable Cas9, including that for the generation of guide RNA vectors, light-mediated Cas9 activation, and quantification of genome editing efficiency in mammalian cells.


Assuntos
Proteína 9 Associada à CRISPR/efeitos da radiação , Sistemas CRISPR-Cas/efeitos da radiação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Regulação da Expressão Gênica/efeitos da radiação , Luz , Optogenética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Técnicas de Cultura de Células , Reparo do DNA por Junção de Extremidades , Células HEK293 , Humanos , Mutação INDEL , Mutação Puntual , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
10.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065754

RESUMO

Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.


Assuntos
Biliverdina/química , Cianobactérias/genética , Fotorreceptores Microbianos/química , Fitocromo/química , Substituição de Aminoácidos , Biliverdina/genética , Sítios de Ligação , Cianobactérias/metabolismo , Eletrônica , Cinética , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Fitocromo/genética , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise Espectral , Análise Espectral Raman , Tempo , Fatores de Tempo
11.
Methods Mol Biol ; 2240: 57-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423226

RESUMO

Fluorescence imaging provides a powerful technique to observe biomolecular dynamics in living systems, if fluorescent biosensors for the relevant biomolecules become available. Here, we describe a highly sensitive, cell-based biosensor to visualize nitric oxide (NO) released from living cells. Nitric oxide (NO) is a gaseous molecule that is involved in a broad range of physiological and toxicological processes in cardiovascular and central nervous systems, etc. This chapter describes how to make optical measurements of NO release from living cells using the cell-based fluorescent biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Óxido Nítrico/metabolismo , Testes de Toxicidade/métodos , Animais , Linhagem Celular , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119379, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33401182

RESUMO

Cyanobacteriochromes (CBCRs) are an emerging class of photoreceptors that are distant relatives of the phytochromes family. Unlike phytochromes, CBCRs have gained popularity in optogenetics due to their highly diverse spectral properties spanning the UV to near-IR region and only needing a single compact binding domain. AnPixJg2 is a CBCR that can reversibly photoswitch between its red-absorbing (15ZPr) and green-absorbing (15EPg) forms of the phycocyanobilin (PCB) cofactor. To reveal primary events of photoconversion, we implemented femtosecond transient absorption spectroscopy with a homemade LED box and a miniature peristaltic pump flow cell to track transient electronic responses of the photoexcited AnPixJg2 on molecular time scales. The 525 nm laser-induced Pg-to-Pr reverse conversion exhibits a ~3 ps excited-state lifetime before reaching the conical intersection (CI) and undergoing further relaxation on the 30 ps time scale to generate a long-lived Lumi-G ground state intermediate en route to Pr. The 650 nm laser-induced Pr-to-Pg forward conversion is less efficient than reverse conversion, showing a longer-lived excited state which requires two steps with ~13 and 217 ps time constants to enter the CI region. Furthermore, using a tunable ps Raman pump with broadband Raman probe on both the Stokes and anti-Stokes sides, we collected the pre-resonance ground-state femtosecond stimulated Raman spectroscopy (GS-FSRS) data with mode assignments aided by quantum calculations. Key vibrational marker bands at ~850, 1050, 1615, and 1649 cm-1 of the Pr conformer exhibit a notable blueshift to those of the Pg conformer inside AnPixJg2, reflecting the PCB chromophore terminal D (major) and A (minor) ring twist along the primary photoswitching reaction coordinate. This integrated ultrafast spectroscopy and computational platform has the potential to elucidate photochemistry and photophysics of more CBCRs and photoactive proteins in general, providing the highly desirable mechanistic insights to facilitate the rational design of functional molecular sensors and devices.


Assuntos
Fotorreceptores Microbianos , Fitocromo , Proteínas de Bactérias , Eletrônica , Luz
13.
Lab Invest ; 101(1): 125-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32892213

RESUMO

Although the Cre-loxP recombination system has been extensively used to analyze gene function in vivo, spatiotemporal control of Cre activity is a critical limitation for easy and precise recombination. Here, we established photoactivatable-Cre (PA-Cre) knock-in (KI) mice at a safe harbor locus for the spatial and temporal regulation of Cre recombinase activity. The mice showed whole-body Cre recombination activity following light exposure for only 1 h. Almost no leaks of Cre recombination activity were detected in the KI mice under natural light conditions. Spot irradiation could induce locus-specific recombination noninvasively, enabling us to compare phenotypes on the left and right sides in the same mouse. Furthermore, long-term irradiation using an implanted wireless LED substantially improved Cre recombination activity, especially in the brain. These results demonstrate that PA-Cre KI mice can facilitate the spatiotemporal control of genetic engineering and provide a useful resource to elucidate gene function in vivo with Cre-loxP.


Assuntos
Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Integrases/genética , Proteínas Luminescentes/genética , Optogenética/métodos , Animais , Feminino , Engenharia Genética , Camundongos , Camundongos Endogâmicos C57BL , RNA não Traduzido/genética , Proteína Vermelha Fluorescente
14.
Proc Natl Acad Sci U S A ; 117(46): 28579-28581, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139551

RESUMO

Embryo implantation is achieved upon successful interaction between a fertilized egg and receptive endometrium and is mediated by spatiotemporal expression of implantation-associated molecules including leukemia inhibitory factor (LIF). Here we demonstrate, in mice, that LIF knockdown via a photoactivatable CRISPR-Cas9 gene editing system and illumination with a light-emitting diode can spatiotemporally disrupt fertility. This system enables dissection of spatiotemporal molecular mechanisms associated with embryo implantation and provides a therapeutic strategy for temporal control of reproductive functions in vivo.


Assuntos
Implantação do Embrião , Fator Inibidor de Leucemia/metabolismo , Optogenética , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Fertilidade , Fator Inibidor de Leucemia/genética , Camundongos Endogâmicos ICR
15.
Int J Mol Sci ; 21(17)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872628

RESUMO

Cyanobacteriochromes (CBCRs), which are known as linear tetrapyrrole-binding photoreceptors, to date can only be detected from cyanobacteria. They can perceive light only in a small unit, which is categorized into various lineages in correlation with their spectral and structural characteristics. Recently, we have succeeded in identifying specific molecules, which can incorporate mammalian intrinsic biliverdin (BV), from the expanded red/green (XRG) CBCR lineage and in converting BV-rejective molecules into BV-acceptable ones with the elucidation of the structural basis. Among the BV-acceptable molecules, AM1_1870g3_BV4 shows a spectral red-shift in comparison with other molecules, while NpF2164g5_BV4 does not show photoconversion but stably shows a near-infrared (NIR) fluorescence. In this study, we found that AM1_1870g3_BV4 had a specific Tyr residue near the d-ring of the chromophore, while others had a highly conserved Leu residue. The replacement of this Tyr residue with Leu in AM1_1870g3_BV4 resulted in a blue-shift of absorption peak. In contrast, reverse replacement in NpF2164g5_BV4 resulted in a red-shift of absorption and fluorescence peaks, which applies to fluorescence bio-imaging in mammalian cells. Notably, the same Tyr/Leu-dependent color-tuning is also observed for the CBCRs belonging to the other lineage, which indicates common molecular mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Cianobactérias/metabolismo , Fotorreceptores Microbianos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Biliverdina/química , Cor , Células HeLa , Humanos , Luz , Homologia de Sequência
16.
Yakugaku Zasshi ; 140(8): 993-1000, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32741873

RESUMO

The human genome consists of more than 20000 genes and is essential for all biological phenomena. To understand these biological phenomena, including diseases, and to be able to modify them, approaches that enable optical control of the genome may be useful. Recently, we developed an optogenetic tool, named photoactivatable Cas9 (PA-Cas9). We divided Cas9 nuclease from the CRISPR-Cas9 system into two fragments and connected photo-inducible dimerization proteins, named Magnet system, to the fragments, leading to the development of PA-Cas9 of which nuclease activity is switchable with light. PA-Cas9 allows direct editing of DNA sequences by light stimulation. Additionally, we developed a light-inducible, RNA-guided programmable system for endogenous gene activation based on the CRISPR-Cas9 system. We demonstrated that this optogenetic tool allows rapid and reversible targeted gene activation by light. Using this tool, we exemplified optical control of neuronal differentiation of human induced pluripotent stem cells (iPSCs). The CRISPR-Cas9-based, photoactivatable transcription system offers a simple and versatile approach to precise gene activation. In addition to the CRISPR-Cas9-based optogenetic tools, we developed a photoactivatable Cre-loxP system. This tool allows optical control of DNA recombination reaction in an internal organ even by external, noninvasive illumination using LED light source. To date, genome engineering technology and optogenetics technology have emerged separately as different applications. Our studies described above merge these emerging research fields together.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Engenharia Genética , Luz , Optogenética , Ativação Transcricional , Animais , Diferenciação Celular , DNA/genética , Edição de Genes , Genoma Humano , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Recombinação Genética
17.
Nat Commun ; 11(1): 2141, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358538

RESUMO

Optogenetic genome engineering tools enable spatiotemporal control of gene expression and provide new insight into biological function. Here, we report the new version of genetically encoded photoactivatable (PA) Cre recombinase, PA-Cre 3.0. To improve PA-Cre technology, we compare light-dimerization tools and optimize for mammalian expression using a CAG promoter, Magnets, and 2A self-cleaving peptide. To prevent background recombination caused by the high sequence similarity in the dimerization domains, we modify the codons for mouse gene targeting and viral production. Overall, these modifications significantly reduce dark leak activity and improve blue-light induction developing our new version, PA-Cre 3.0. As a resource, we have generated and validated AAV-PA-Cre 3.0 as well as two mouse lines that can conditionally express PA-Cre 3.0. Together these new tools will facilitate further biological and biomedical research.


Assuntos
Integrases/metabolismo , Recombinação Genética/genética , Animais , Códon/genética , Engenharia Genética/métodos , Integrases/genética , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos da radiação , Recombinação Genética/efeitos da radiação
18.
Biochem Biophys Res Commun ; 526(1): 213-217, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32204914

RESUMO

The Cre-loxP recombination system is widely used to generate genetically modified mice for biomedical research. Recently, a highly efficient photoactivatable Cre (PA-Cre) based on reassembly of split Cre fragments has been established. This technology enables efficient DNA recombination that is activated upon blue light illumination with spatiotemporal precision. In this study, we generated a tTA-dependent photoactivatable Cre-loxP recombinase knock-in mouse model (TRE-PA-Cre mice) using a CRISPR/Cas9 system. These mice were crossed with ROSA26-tdTomato mice (Cre reporter mouse) to visualize DNA recombination as marked by tdTomato expression. We demonstrated that external noninvasive LED blue light illumination allows efficient DNA recombination in the liver of TRE-PA-Cre:ROSA26-tdTomato mice transfected with tTA expression vectors using hydrodynamic tail vein injection. The TRE-PA-Cre mouse established here promises to be useful for optogenetic genome engineering in a noninvasive, spatiotemporal, and cell-type specific manner in vivo.


Assuntos
Técnicas de Introdução de Genes , Engenharia Genética , Genoma , Integrases/metabolismo , Optogenética , Animais , Sequência de Bases , DNA/genética , Feminino , Luz , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Tetraciclina/farmacologia
19.
ACS Cent Sci ; 5(11): 1866-1875, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31807688

RESUMO

Rapid and transient expression of in vitro transcribed mRNA (IVT mRNA) in target cells is a current major challenge in genome engineering therapy. To improve mRNA delivery efficiency, a series of amphiphilic polyaspartamide derivatives were synthesized to contain various hydrophobic moieties with cationic diethylenetriamine (DET) moieties in the side chain and systematically compared as mRNA delivery vehicles (or mRNA-loaded polyplexes). The obtained results demonstrated that the side chain structures of polyaspartamide derivatives were critical for the mRNA delivery efficiency of polyplexes. Interestingly, when the mRNA delivery efficiencies (or the luciferase expression levels in cultured cells) were plotted against an octanol-water partition coefficient (log P) as an indicator of hydrophobicity, a log P threshold was clearly observed to obtain high levels of mRNA expression. Indeed, 3.5 orders of magnitude difference in the expression level is observed between -2.45 and -2.31 in log P. This threshold of log P for the mRNA transfection efficiency apparently correlated with those for the polyplex stability and cellular uptake efficiency. Among the polyaspartamide derivatives with log P > -2.31, a polyaspartamide derivative with 11 residues of 2-cyclohexylethyl (CHE) moieties and 15 residues of DET moieties in the side chains elicited the highest mRNA expression in cultured cells. The optimized polyplex further accomplished highly efficient, rapid, and transient IVT mRNA expression in mouse brain after intracerebroventricular and intrathecal injection. Ultimately, the polyplex allowed for the highly efficient target gene deletion via the expression of Streptococcus pyogenes Cas9 nuclease-coding IVT mRNA in the ependymal layer of ventricles in a reporter mouse model. These results demonstrate the utility of log P driven polymer design for in vivo IVT mRNA delivery.

20.
Angew Chem Int Ed Engl ; 58(49): 17827-17833, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31544993

RESUMO

Photon upconversion (UC) from near-infrared (NIR) light to visible light has enabled optogenetic manipulations in deep tissues. However, materials for NIR optogenetics have been limited to inorganic UC nanoparticles. Herein, NIR-light-triggered optogenetics using biocompatible, organic TTA-UC hydrogels is reported. To achieve triplet sensitization even in highly viscous hydrogel matrices, a NIR-absorbing complex is covalently linked with energy-pooling acceptor chromophores, which significantly elongates the donor triplet lifetime. The donor and acceptor are solubilized in hydrogels formed from biocompatible Pluronic F127 micelles, and heat treatment endows the excited triplets in the hydrogel with remarkable oxygen tolerance. Combined with photoactivatable Cre recombinase technology, NIR-light stimulation successfully performs genome engineering resulting in the formation of dendritic-spine-like structures of hippocampal neurons.


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Hidrogéis/química , Osmio/química , Perileno/química , Genoma , Raios Infravermelhos , Cinética , Micelas , Estrutura Molecular , Optogenética/métodos , Oxigênio/química , Fótons , Poloxâmero/química , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA