Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Methods ; 3(9): 100590, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37714158

RESUMO

Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however, it generally suffers from the low efficiency of homology-directed repair (HDR) in mammalian cells, especially in non-expressed gene loci. In the current study, we generated a tyrosine hydroxylase (TH)-2A-Cre KI model of the common marmoset monkey (marmoset; Callithrix jacchus) using an HDR-biased CRISPR-Cas9 genome editing approach using Cas9-DN1S and RAD51. This model should enable labeling and modification of a specific neuronal lineage using the Cre-loxP system. Collectively, the current study paves the way for versatile gene engineering in NHPs, which may be a significant step toward further biomedical and preclinical applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Tirosina 3-Mono-Oxigenase/genética , Primatas/genética , Mamíferos/genética
2.
Bioeng Transl Med ; 8(5): e10406, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693056

RESUMO

Glioblastoma is characterized by diffuse infiltration into the normal brain. Invasive glioma stem cells (GSCs) are an underlying cause of treatment failure. Despite the use of multimodal therapies, the prognosis remains dismal. New therapeutic approach targeting invasive GSCs is required. Here, we show that neural stem cells (NSCs) derived from CRISRP/Cas9-edited human-induced pluripotent stem cell (hiPSC) expressing a suicide gene had higher tumor-trophic migratory capacity compared with mesenchymal stem cells (MSCs), leading to marked in vivo antitumor effects. High migratory capacity in iPSC-NSCs was related to self-repulsive action and pathotropism involved in EphB-ephrinB and CXCL12-CXCR4 signaling. The gene insertion to ACTB provided higher and stable transgene expression than other common insertion sites, such as GAPDH or AAVS1. Ferroptosis was associated with enhanced antitumor immune responses. The thymidylate synthase and dihydroprimidine dehydrogenase expressions predicted the treatment efficacy of therapeutic hiPSC-NSCs. Our results indicate the potential benefit of genome-edited iPS cells based gene therapy for invasive GSCs. Furthermore, the present research concept may become a platform to promote clinical studies using hiPSC.

3.
Exp Neurol ; 363: 114379, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914084

RESUMO

COVID-19 causes neurological damage, systemic inflammation, and immune cell abnormalities. COVID-19-induced neurological impairment may be caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which directly infects cells of the central nervous system (CNS) and exerts toxic effects. Furthermore, SARS-CoV-2 mutations occur constantly, and it is not well understood how the infectivity of the virus to cells of the CNS changes as the virus mutates. Few studies have examined whether the infectivity of cells of CNS - neural stem/progenitor cells (NS/PCs), neurons, astrocytes, and microglia - varies among SARS-CoV-2 mutant strains. In this study, therefore, we investigated whether SARS-CoV-2 mutations increase infectivity to CNS cells, including microglia. Since it was essential to demonstrate the infectivity of the virus to CNS cells in vitro using human cells, we generated cortical neurons, astrocytes, and microglia from human induced pluripotent stem cells (hiPSCs). We added pseudotyped lentiviruses of SARS-CoV-2 to each type of cells, and then we examined their infectivity. We prepared three pseudotyped lentiviruses expressing the S protein of the original strain (the first SARS-CoV-2 discovered in the world), the Delta variant, and the Omicron variant on their envelopes and analyzed differences of their ability to infect CNS cells. We also generated brain organoids and investigated the infectivity of each virus. The viruses did not infect cortical neurons, astrocytes, or NS/PCs, but microglia were infected by the original, Delta, and Omicron pseudotyped viruses. In addition, DPP4 and CD147, potential core receptors of SARS-CoV-2, were highly expressed in the infected microglia, while DPP4 expression was deficient in cortical neurons, astrocytes, and NS/PCs. Our results suggest that DPP4, which is also a receptor for Middle East respiratory syndrome-coronavirus (MERS-CoV), may play an essential role in the CNS. Our study is applicable to the validation of the infectivity of viruses that cause various infectious diseases in CNS cells, which are difficult to sample from humans.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , Microglia , SARS-CoV-2 , Dipeptidil Peptidase 4 , Neurônios
4.
Genes Cells ; 28(2): 156-169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36530170

RESUMO

Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.


Assuntos
Callithrix , Células-Tronco Embrionárias , Animais , Humanos , Camundongos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Perfilação da Expressão Gênica , Transcriptoma
5.
Neurosci Res ; 185: 49-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36075457

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia which afflicts tens of millions of people worldwide. Despite many scientific progresses to dissect the AD's molecular basis from studies on various mouse models, it has been suffered from evolutionary species differences. Here, we report generation of a non-human primate (NHP), common marmoset model ubiquitously expressing Amyloid-beta precursor protein (APP) transgenes with the Swedish (KM670/671NL) and Indiana (V717F) mutations. The transgene integration of generated two transgenic marmosets (TG1&TG2) was thoroughly investigated by genomic PCR, whole-genome sequencing, and fluorescence in situ hybridization. By reprogramming, we confirmed the validity of transgene expression in induced neurons in vitro. Moreover, we discovered structural changes in specific brain regions of transgenic marmosets by magnetic resonance imaging analysis, including in the entorhinal cortex and hippocampus. In immunohistochemistry, we detected increased Aß plaque-like structures in TG1 brain at 7 years old, although evident neuronal loss or glial inflammation was not observed. Thus, this study summarizes our attempt to establish an NHP AD model. Although the transgenesis approach alone seemed not sufficient to fully recapitulate AD in NHPs, it may be beneficial for drug development and further disease modeling by combination with other genetically engineered models and disease-inducing approaches.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Callithrix/genética , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , Camundongos Transgênicos , Transgenes
6.
Dev Growth Differ ; 64(6): 325-341, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35841539

RESUMO

Potentials of immortal proliferation and unlimited differentiation into all the three germ layers and germ cells in induced pluripotent stem cells (iPSCs) render them important bioresources for in vitro reconstitution and modeling of intravital tissues and organs in various animal models, thus contributing to the elucidation of pathomechanisms, drug discovery and stem cell-based regenerative medicine. We previously reported promising approaches for deriving transgene-free iPSCs from somatic fibroblasts of multiple mammalian species by episomal vector or RNA transfection, although the respective step-by-step protocols and the combinatorial usage of these methods, which achieved high induction efficiency, have not been described in the literature so far. Here, we provide a detailed step-by-step description of these methods with critical tips and slight modifications (improvements) to previously reported methods. We also report a novel method for the establishment of iPSCs from the Syrian hamster (also known as golden hamster; Mesocricetus auratus), a unique animal model of hibernation. We anticipate this methodology will contribute to stem cell biology and regenerative medicine research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Reprogramação Celular , Fibroblastos , Mamíferos , Transgenes
7.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35641224

RESUMO

Transactivating response element DNA-binding protein of 43 kDa (TDP-43), which is encoded by the TARDBP gene, is an RNA-binding protein with fundamental RNA processing activities, and its loss-of-function (LOF) has a central role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TARDBP mutations are postulated to inactivate TDP-43 functions, leading to impaired RNA processing. However, it has not been fully examined how mutant TDP-43 affects global RNA regulation, especially in human cell models. Here, we examined global RNA processing in forebrain cortical neurons derived from human induced pluripotent stem cells (iPSCs) with a pathogenic TARDBP mutation encoding the TDP-43K263E protein. In neurons expressing mutant TDP-43, we detected disrupted RNA regulation, including global changes in gene expression, missplicing, and aberrant polyadenylation, all of which were highly similar to those induced by TDP-43 knock-down. This mutation-induced TDP-43 LOF was not because of the cytoplasmic mislocalization of TDP-43. Intriguingly, in nonneuronal cells, including iPSCs and neural progenitor cells (NPCs), we did not observe impairments in RNA processing, thus indicating that the K263E mutation results in neuron-specific LOF of TDP-43. This study characterizes global RNA processing impairments induced by mutant TDP-43 and reveals the unprecedented cell type specificity of TDP-43 LOF in ALS/FTLD pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Mutação/genética , RNA/genética , Processamento Pós-Transcricional do RNA
8.
iScience ; 25(4): 104089, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35497000

RESUMO

GADD45G, one of the genes containing the human-specific conserved deletion enhancer-sequence (hCONDEL), has contributed to the evolution of the human cerebrum, but its function in human neurons has not been established. Here, we show that the GADD45G/p38 MAPK/CDC25B signaling pathway promotes neurite outgrowth in human neurons by facilitating microtubule polymerization. This pathway ultimately promotes dephosphorylation of phosphorylated CRMP2 which in turn promotes microtubule assembly. We also found that GADD45G was highly expressed in developing human cerebral specimens. In addition, RK-682, which is the inhibitor of a phosphatase of p38 MAPK and was found in Streptomyces sp., was shown to promote microtubule polymerization and neurite outgrowth by enhancing p38 MAPK/CDC25B signaling. These in vitro and in vivo results indicate that GADD45G/p38 MAPK/CDC25B enhances neurite outgrowth in human neurons.

9.
Cells ; 11(3)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159172

RESUMO

A previous study assessing the efficiency of the genome editing technology CRISPR-Cas9 for knock-in gene targeting in common marmoset (marmoset; Callithrix jacchus) embryonic stem cells (ESCs) unexpectedly identified innately enhanced homologous recombination activity in marmoset ESCs. Here, we compared gene expression in marmoset and human pluripotent stem cells using transcriptomic and quantitative PCR analyses and found that five HR-related genes (BRCA1, BRCA2, RAD51C, RAD51D, and RAD51) were upregulated in marmoset cells. A total of four of these upregulated genes enhanced HR efficiency with CRISPR-Cas9 in human pluripotent stem cells. Thus, the present study provides a novel insight into species-specific mechanisms for the choice of DNA repair pathways.


Assuntos
Callithrix , Transcriptoma , Animais , Células-Tronco Embrionárias/metabolismo , Edição de Genes , Recombinação Homóloga , Humanos , Transcriptoma/genética
10.
Stem Cell Res ; 56: 102549, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34598113

RESUMO

The defective and persistent Sendai virus (SeVdp) vector system allows efficient generation of transgene-free induced pluripotent stem cells (iPSCs) from human somatic cells. By leveraging the system, here we report the generation of an iPSC line from somatic fibroblasts of a healthy control donner (female), named KEIOi002-A (also named YG-iPS). The control iPSC line would be a useful resource for stem cell research and regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Reprogramação Celular , Feminino , Fibroblastos , Vetores Genéticos/genética , Humanos , Vírus Sendai/genética , Transgenes
11.
Stem Cell Res ; 53: 102375, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088004

RESUMO

We previously reported the non-viral derivation of transgene-free induced pluripotent stem cells (iPSCs) from somatic fibroblasts of a female beagle dog using an optimized induction medium and integration-free episomal vectors. Here, we report novel derivation of a male canine iPSC line OF35Y-iPS, which showed standard characteristics of pluripotency such as a strong gene expression profile of pluripotency markers, differentiation potential into all three germ layers, and normal karyotype (78XY). Furthermore, we demonstrated targeted integration of 2A-EGFP into the canine NANOS3 locus. The novel iPSC line would be a useful resource for stem cell research and regenerative veterinary medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Cães , Feminino , Fibroblastos , Masculino , Pesquisa com Células-Tronco , Transgenes
12.
Stem Cell Res ; 53: 102380, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088009

RESUMO

Epstein-Barr virus (EBV)-based episomal vector system enables persistent transgene expression, which is advantageous for efficient derivation of transgene-free induced pluripotent stem cells (iPSCs) without viral transduction. Here, we report establishment of an iPSC line from somatic fibroblasts of a neonatal common marmoset monkey (marmoset; Callithrix jacchus) using an all-in-one episomal vector that we newly developed. The established iPSC line, named NM-iPS, showed standard characteristics of pluripotency such as pluripotency-related marker expression, three germ layer differentiation, and normal karyotype (2n = 46). The novel iPSC line would be a useful resource for stem cell research using non-human primates.


Assuntos
Infecções por Vírus Epstein-Barr , Células-Tronco Pluripotentes Induzidas , Animais , Callithrix , Diferenciação Celular , Fibroblastos , Herpesvirus Humano 4
13.
Stem Cell Res ; 53: 102385, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088013

RESUMO

The domestic ferret (ferret; Mustela putorius furo) is an important animal model for neuroscience and preclinical/veterinary medicine owing to its highly developed cerebral cortex and susceptibility to avian influenza and corona viruses. Nevertheless, there is a lack of in vitro ferret models, since immortal cell lines including induced pluripotent stem cells (iPSCs) of ferrets have been scarce. In this study, we established an iPSC line from ferret skin fibroblasts. The established iPSC line, fiPS-1, showed standard characteristics of pluripotency, but its X chromosome was unstable. Collectively, the present study provides a useful resource for in vitro model using the ferret.


Assuntos
Furões , Células-Tronco Pluripotentes Induzidas , Animais , Instabilidade Cromossômica , Modelos Animais de Doenças , Feminino , Furões/genética , Cromossomo X
14.
Stem Cell Reports ; 16(4): 754-770, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33798453

RESUMO

Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers and germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem cell-based therapy, gene-modified animal production, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrate the iPSC derivation from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the fibroblasts temporarily acquired a neural stem cell-like state during the reprogramming. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem cell-based research using various animals in Mammalia.


Assuntos
Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos/metabolismo , Transgenes , Animais , Callithrix , Cães , Perfilação da Expressão Gênica , Vetores Genéticos/metabolismo , Camadas Germinativas/metabolismo , Células-Tronco Neurais/metabolismo , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq , Especificidade da Espécie , Suínos , Vírus
15.
Stem Cell Res ; 53: 102308, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33799281

RESUMO

POU class 5 homeobox 1 (POU5F1, also known as OCT4) is critical for maintenance of pluripotency, germ cell fate, reprogramming into a pluripotent state, and early embryogenesis. We generated an embryonic stem cell (ESC) line of the common marmoset (Callithrix jacchus) harboring a heterozygous knock-in allele of OCT4-P2A-mCerulean-T2A-pac. The ESC line (CMES40-OC) will be valuable for investigation of primed/naïve pluripotency and germ cell fate. Homozygous OCT4 knock-in clones were generated but could not be sustained in an undifferentiated state in long-term culture. The OCT4 knock-in system facilitated simultaneous knock-in of a reporter construct at another locus, DDX4 (VASA).


Assuntos
Callithrix , Genes Homeobox , Alelos , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias , Fator 3 de Transcrição de Octâmero/genética
16.
Stem Cell Res ; 51: 102164, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33453576

RESUMO

We previously reported the efficient targeted introduction of transgenes into the genomic DNA of the common marmoset (Callithrix jacchus) using CRISPR-Cas9. In this study, we generated a marmoset embryonic stem cell (ESC) line that ubiquitously expresses the tamoxifen-inducible Cre-driver ERT2CreERT2. We validated the pluripotency of the ESC line and also successfully demonstrated the temporal control of the Cre-driver in a tamoxifen-dependent manner in the ESCs. This ESC line, named ActiCre-B1, will be a valuable resource for in vitro investigation of phenotypes related to embryonic lethality by targeted knockout of functionally important genes.


Assuntos
Callithrix , Tamoxifeno , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Integrases , Tamoxifeno/farmacologia
17.
Neurosci Lett ; 746: 135676, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33516803

RESUMO

Human induced pluripotent stem cells (iPSCs) have great potential to elucidate the molecular pathogenesis of neurological/psychiatric diseases. In particular, neurological/psychiatric diseases often display brain region-specific symptoms, and the technology for generating region-specific neural cells from iPSCs has been established for detailed modeling of neurological/psychiatric disease phenotypes in vitro. On the other hand, recent advances in culturing human iPSCs without feeder cells have enabled highly efficient and reproducible neural induction. However, conventional regional control technologies have mainly been developed based on on-feeder iPSCs, and these methods are difficult to apply to feeder-free (ff) iPSC cultures. In this study, we established a novel culture system to generate region-specific neural cells from human ff-iPSCs. This system is the best optimized approach for feeder-free iPSC culture and generates specific neuronal subtypes with high purity and functionality, including forebrain cortical neurons, forebrain interneurons, midbrain dopaminergic neurons, and spinal motor neurons. In addition, the temporal patterning of cortical neuron layer specification in the forebrain was reproduced in our culture system, which enables the generation of layer-specific cortical neurons. Neuronal activity was demonstrated in the present culture system by using multiple electrode array and calcium imaging. Collectively, our ff-iPSC-based culture system would provide a desirable platform for modeling various types of neurological/psychiatric disease phenotypes.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Humanos , Imagem Molecular/métodos
18.
Mol Autism ; 11(1): 68, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873342

RESUMO

BACKGROUND: Several genetic alterations, including point mutations and copy number variations in NLGN genes, have been associated with psychiatric disorders, such as autism spectrum disorder (ASD) and X-linked mental retardation (XLMR). NLGN genes encode neuroligin (NL) proteins, which are adhesion molecules that are important for proper synaptic formation and maturation. Previously, we and others found that the expression level of murine NL1 is regulated by proteolytic processing in a synaptic activity-dependent manner. METHODS: In this study, we analyzed the effects of missense variants associated with ASD and XLMR on the metabolism and function of NL4X, a protein which is encoded by the NLGN4X gene and is expressed only in humans, using cultured cells, primary neurons from rodents, and human induced pluripotent stem cell-derived neurons. RESULTS: NL4X was found to undergo proteolytic processing in human neuronal cells. Almost all NL4X variants caused a substantial decrease in the levels of mature NL4X and its synaptogenic activity in a heterologous culture system. Intriguingly, the L593F variant of NL4X accelerated the proteolysis of mature NL4X proteins located on the cell surface. In contrast, other variants decreased the cell-surface trafficking of NL4X. Notably, protease inhibitors as well as chemical chaperones rescued the expression of mature NL4X. LIMITATIONS: Our study did not reveal whether these dysfunctional phenotypes occurred in individuals carrying NLGN4X variant. Moreover, though these pathological mechanisms could be exploited as potential drug targets for ASD, it remains unclear whether these compounds would have beneficial effects on ASD model animals and patients. CONCLUSIONS: These data suggest that reduced amounts of the functional NL4X protein on the cell surface is a common mechanism by which point mutants of the NL4X protein cause psychiatric disorders, although different molecular mechanisms are thought to be involved. Furthermore, these results highlight that the precision medicine approach based on genetic and cell biological analyses is important for the development of therapeutics for psychiatric disorders.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Mutação/genética , Sinapses/patologia , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Predisposição Genética para Doença , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Camundongos , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Organogênese , Ratos Wistar
19.
Stem Cell Res ; 44: 101740, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32151954

RESUMO

BLIMP1 (PRDM1) and VASA (DDX4) play pivotal roles in the development of the germ cell linage. Importantly, these genes are specifically expressed in germ cells; BLIMP1 in primordial germ cells (PGCs) to early-stage gonocytes, and VASA in migration-stage PGCs to mature gametes. The high reproductive efficiency of common marmosets (marmosets; Callithrix jacchus) makes them advantageous for use in germ cell research. We herein report the generation of a male marmoset embryonic stem cell (ESC) line harboring BLIMP1 and DDX4 double reporters. This ESC line will be a useful tool for investigating male gametogenesis in non-human primates.


Assuntos
Callithrix , Linhagem Celular , Células-Tronco Embrionárias , Transposases , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Células Germinativas , Masculino
20.
Neurosci Res ; 155: 1-11, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31586586

RESUMO

The common marmoset (marmoset; Callithrix jacchus) harbors various desired features as a non-human primate (NHP) model for neuroscience research. Recently, efforts have been made to induce neural cells in vitro from marmoset pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are characterized by their capacity to differentiate into all cell types from the three germ layers. Successful generation of marmoset neural cells is not only invaluable for understanding neural development and for modeling neurodegenerative and psychiatric disorders, but is also necessary for the phenotypic screening of genetically-modified marmosets. However, differences in the differentiation propensity among PSC lines hamper the applicability and the reproducibility of differentiation methods. To overcome this limitation, we evaluated the efficacy of small molecules for neural differentiation of marmoset ESCs (cjESCs) and iPSCs using multiple differentiation methods. By immunochemical and transcriptomic analyses, we confirmed that our methods using the small molecules are efficient for various differentiation protocols by either enhancing the yield of a mixture of neural cells including both neurons and glial cells, or a pure population of neurons. Collectively, our findings optimized in vitro neural differentiation methods for marmoset PSCs, which would ultimately help enhance the utility of the animal model in neuroscience.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neuroglia/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA