Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Magn Reson Med ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725389

RESUMO

PURPOSE: Demonstrate the feasibility and evaluate the performance of single-shot diffusion trace-weighted radial echo planar spectroscopic imaging (Trace DW-REPSI) for quantifying the trace ADC in phantom and in vivo using a 3T clinical scanner. THEORY AND METHODS: Trace DW-REPSI datasets were acquired in 10 phantom and 10 healthy volunteers, with a maximum b-value of 1601 s/mm2 and diffusion time of 10.75 ms. The self-navigation properties of radial acquisitions were used for corrections of shot-to-shot phase and frequency shift fluctuations of the raw data. In vivo trace ADCs of total NAA (tNAA), total creatine (tCr), and total choline (tCho) extrapolated to pure gray and white matter fractions were compared, as well as trace ADCs estimated in voxels within white or gray matter-dominant regions. RESULTS: Trace ADCs in phantom show excellent agreement with reported values, and in vivo ADCs agree well with the expected differences between gray and white matter. For tNAA, tCr, and tCho, the trace ADCs extrapolated to pure gray and white matter ranged from 0.18-0.27 and 0.26-0.38 µm2/ms, respectively. In sets of gray and white matter-dominant voxels, the values ranged from 0.21 to 0.27 and 0.24 to 0.31 µm2/ms, respectively. The overestimated trace ADCs from this sequence can be attributed to the short diffusion time. CONCLUSION: This study presents the first demonstration of the single-shot diffusion trace-weighted spectroscopic imaging sequence using radial echo planar trajectories. The Trace DW-REPSI sequence could provide an estimate of the trace ADC in a much shorter scan time compared to conventional approaches that require three separate measurements.

2.
NMR Biomed ; 37(4): e5090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148181

RESUMO

This study demonstrates the feasibility and performance of the point-resolved spectroscopy (PRESS)-based, single-shot diffusion trace-weighted sequence in quantifying the trace apparent diffusion coefficient (ADC) in phantom and in vivo using a 3-T MRI/MRS scanner. The single-shot diffusion trace-weighted PRESS sequence was implemented and compared with conventional diffusion-weighted (DW)-PRESS variants using bipolar and unipolar diffusion-sensitizing gradients. Nine phantom datasets were acquired using each sequence, and seven volunteers were scanned in three different brain regions to determine the range and variability of trace ADC values, and to allow a comparison of trace ADCs among the sequences. This sequence results in a comparatively stable range of trace ADC values that are statistically significantly higher than those produced from unipolar and bipolar DW-PRESS sequences. Only total n-acetylaspartate, total creatine, and total choline were reliably estimated in all sequences with Cramér-Rao lower bounds of, at most, 20%. The larger trace ADCs from the single-shot sequences are probably attributable to the shorter diffusion time relative to the other sequences. Overall, this study presents the first demonstration of the single-shot diffusion trace-weighted sequence in a clinical scanner at 3 T. The results show excellent agreement of phantom trace ADCs computed with all sequences, and in vivo ADCs agree well with the expected differences between gray and white matter. The diffusion trace-weighted sequence could provide an estimate of the trace ADC in a shorter scan time (by nearly a factor of 3) compared with conventional DW-PRESS approaches that require three separate orthogonal directions.


Assuntos
Encéfalo , Substância Branca , Humanos , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
3.
Metabolites ; 13(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37512542

RESUMO

The main objective of this work was to evaluate the application of individual and ensemble machine learning models to classify malignant and benign breast masses using features from two-dimensional (2D) correlated spectroscopy spectra extracted from five-dimensional echo-planar correlated spectroscopic imaging (5D EP-COSI) and diffusion-weighted imaging (DWI). Twenty-four different metabolite and lipid ratios with respect to diagonal fat peaks (1.4 ppm, 5.4 ppm) from 2D spectra, and water and fat peaks (4.7 ppm, 1.4 ppm) from one-dimensional non-water-suppressed (NWS) spectra were used as the features. Additionally, water fraction, fat fraction and water-to-fat ratios from NWS spectra and apparent diffusion coefficients (ADC) from DWI were included. The nine most important features were identified using recursive feature elimination, sequential forward selection and correlation analysis. XGBoost (AUC: 93.0%, Accuracy: 85.7%, F1-score: 88.9%, Precision: 88.2%, Sensitivity: 90.4%, Specificity: 84.6%) and GradientBoost (AUC: 94.3%, Accuracy: 89.3%, F1-score: 90.7%, Precision: 87.9%, Sensitivity: 94.2%, Specificity: 83.4%) were the best-performing models. Conventional biomarkers like choline, myo-Inositol, and glycine were statistically significant predictors. Key features contributing to the classification were ADC, 2D diagonal peaks at 0.9 ppm, 2.1 ppm, 3.5 ppm, and 5.4 ppm, cross peaks between 1.4 and 0.9 ppm, 4.3 and 4.1 ppm, 2.3 and 1.6 ppm, and the triglyceryl-fat cross peak. The results highlight the contribution of the 2D spectral peaks to the model, and they demonstrate the potential of 5D EP-COSI for early breast cancer detection.

4.
Magn Reson Imaging ; 95: 27-38, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265696

RESUMO

Brain structural changes in HIV identified by voxel-based morphometry (VBM) alone could arise from a variety of causes that are difficult to distinguish without further information, such as cortical thickness (CT), gyrification index (GI) or sulcal depth (SD). Hence, our goal was to assess these additional metrics in HIV using high-resolution 3D T1-weighted images and investigate if surface-based morphometric (SBM) analysis would reveal significant changes in the gray matter (GM) and white matter (WM) volumes combined with alterations in cortical thickness (CT), gyrification index (GI), sulcal depth (SD). T1-w magnetization-prepared-rapid-acquisition gradient-echo (MP-RAGE) scans were acquired in 27 HIV-infected individuals on antiretroviral therapy (ART) and 15 HIV-uninfected healthy controls using a 3T MRI scanner equipped with a 16-channel head "receive" and a quadrature body "transmit" coil. Voxel-based and surface-based morphometric analyses were performed using the MATLAB based SPM Computational Anatomy Toolbox (CAT12.7(1700)). HIV-infected patients showed significantly altered GM and WM volumes, CT, GI, and SD, in multiple brain regions. This study showed the association of altered GM and WM volumes in local brain regions with the changes in region-wise CT, GI and SD measures of HIV-infected patients, especially in the parahippocampal and middle frontal regions as compared to uninfected healthy controls. The outcome of this study suggests that the findings of VBM may not necessarily indicate the volumetric shrinkage or increase alone, but might also be due to altered CT, GI, or SD. Correlation analysis showed a significantly accelerated gray matter loss with age in HIV-infected individuals compared to uninfected healthy controls.


Assuntos
Infecções por HIV , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/tratamento farmacológico
5.
Magn Reson Imaging ; 94: 43-47, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113740

RESUMO

The present study describes a model-based approach for correcting off-resonance in the context of double half-echo k-space acquisitions. This technique employs center-out readouts in forward and reverse directions to reduce echo-times but is sensitive to off-resonance, which manifests as pixel shifts in both directions. Demodulating the k-space signal with a constant off-resonance term per slice removes pixel shifts and results in a marked reduction in blurring. Phantom and in vivo datasets are demonstrated from low bandwidth sodium imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Aumento da Imagem/métodos , Imagem Ecoplanar/métodos , Sódio , Algoritmos , Artefatos
6.
MAGMA ; 35(4): 667-682, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35869359

RESUMO

OBJECTIVES: This study aimed at developing dictionary learning (DL) based compressed sensing (CS) reconstruction for randomly undersampled five-dimensional (5D) MR Spectroscopic Imaging (3D spatial + 2D spectral) data acquired in prostate cancer patients and healthy controls, and test its feasibility at 8x and 12x undersampling factors. MATERIALS AND METHODS: Prospectively undersampled 5D echo-planar J-resolved spectroscopic imaging (EP-JRESI) data were acquired in nine prostate cancer (PCa) patients and three healthy males. The 5D EP-JRESI data were reconstructed using DL and compared with gradient sparsity-based Total Variation (TV) and Perona-Malik (PM) methods. A hybrid reconstruction technique, Dictionary Learning-Total Variation (DLTV), was also designed to further improve the quality of reconstructed spectra. RESULTS: The CS reconstruction of prospectively undersampled (8x and 12x) 5D EP-JRESI data acquired in prostate cancer and healthy subjects were performed using DL, DLTV, TV and PM. It is evident that the hybrid DLTV method can unambiguously resolve 2D J-resolved peaks including myo-inositol, citrate, creatine, spermine and choline. CONCLUSION: Improved reconstruction of the accelerated 5D EP-JRESI data was observed using the hybrid DLTV. Accelerated acquisition of in vivo 5D data with as low as 8.33% samples (12x) corresponds to a total scan time of 14 min as opposed to a fully sampled scan that needs a total duration of 2.4 h (TR = 1.2 s, 32 [Formula: see text]×16 [Formula: see text]×8 [Formula: see text], 512 [Formula: see text] and 64 [Formula: see text]).


Assuntos
Imagem Ecoplanar , Neoplasias da Próstata , Colina , Imagem Ecoplanar/métodos , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem
7.
BJR Open ; 4(1): 20220009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860693

RESUMO

Objectives: The main objective of this work was to detect novel biomarkers in breast cancer by spreading the MR spectra over two dimensions in multiple spatial locations using an accelerated 5D EP-COSI technology. Methods: The 5D EP-COSI data were non-uniformly undersampled with an acceleration factor of 8 and reconstructed using group sparsity-based compressed sensing reconstruction. Different metabolite and lipid ratios were then quantified and statistically analyzed for significance. Linear discriminant models based on the quantified metabolite and lipid ratios were generated. Spectroscopic images of the quantified metabolite and lipid ratios were also reconstructed. Results: The 2D COSY spectra generated using the 5D EP-COSI technique showed differences among healthy, benign, and malignant tissues in terms of their mean values of metabolite and lipid ratios, especially the ratios of potential novel biomarkers based on unsaturated fatty acids, myo-inositol, and glycine. It is further shown the potential of choline and unsaturated lipid ratio maps, generated from the quantified COSY signals across multiple locations in the breast, to serve as complementary markers of malignancy that can be added to the multiparametric MR protocol. Discriminant models using metabolite and lipid ratios were found to be statistically significant for classifying benign and malignant tumor from healthy tissues. Conclusions: Accelerated 5D EP-COSI technique demonstrates the potential to detect novel biomarkers such as glycine, myo-inositol, and unsaturated fatty acids in addition to commonly reported choline in breast cancer, and facilitates metabolite and lipid ratio maps which have the potential to play a significant role in breast cancer detection. Advances in knowledge: This study presents the first evaluation of a multidimensional MR spectroscopic imaging technique for the detection of potentially novel biomarkers based on glycine, myo-inositol, and unsaturated fatty acids, in addition to commonly reported choline. Spatial mapping of choline and unsaturated fatty acid ratios with respect to water in malignant and benign breast masses are also shown. These metabolic characteristics may serve as additional biomarkers for improving the diagnostic and therapeutic evaluation of breast cancer.

8.
Magn Reson Imaging ; 83: 89-95, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34271088

RESUMO

Sodium imaging typically employs ultrashort echo time radial, density adapted and cones trajectories to capture the rapidly decaying short T2 signal. The present study considers the parameter choices involved in the use of these trajectories in terms of their impact on the resolution and signal to noise ratio. Many parameters have a strong effect on these image properties, particularly the number of spokes which impacts voxel size. The present article develops an understanding of the trade-offs involved and how to choose optimal (or at least reasonable) parameter values. This has a practical role in designing clinical protocols for imaging sodium.


Assuntos
Imageamento Tridimensional , Sódio , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Razão Sinal-Ruído
9.
Magn Reson Med ; 86(1): 46-61, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33604944

RESUMO

PURPOSE: To implement a novel, accelerated, 2D radial echo-planar spectroscopic imaging (REPSI) sequence using undersampled radial k-space trajectories and compressed-sensing reconstruction, and to compare results with those from an undersampled Cartesian spectroscopic sequence. METHODS: The REPSI sequence was implemented using golden-angle view-ordering on a 3T MRI scanner. Radial and Cartesian echo-planar spectroscopic imaging (EPSI) data were acquired at six acceleration factors, each with time-equivalent scan durations, and reconstructed using compressed sensing with total variation regularization. Results from prospectively and retrospectively undersampled phantom and in vivo brain data were compared over estimated concentrations and Cramer-Rao lower-bound values, normalized RMS errors of reconstructed metabolite maps, and percent absolute differences between fully sampled and reconstructed spectroscopic images. RESULTS: The REPSI method with compressed sensing is able to tolerate greater reductions in scan time compared with EPSI. The reconstruction and quantitation metrics (i.e., spectral normalized RMS error maps, metabolite map normalized RMS error values [e.g., for total N-acetyl asparate, REPSI = 9.4% vs EPSI = 16.3%; acceleration factor = 2.5], percent absolute difference maps, and concentration and Cramer-Rao lower-bound estimates) showed that accelerated REPSI can reduce the scan time by a factor of 2.5 while retaining image and quantitation quality. CONCLUSION: Accelerated MRSI using undersampled radial echo-planar acquisitions provides greater reconstruction accuracy and more reliable quantitation for a range of acceleration factors compared with time-equivalent compressed-sensing reconstructions of undersampled Cartesian EPSI. Compared to the Cartesian approach, radial undersampling with compressed sensing could help reduce 2D spectroscopic imaging acquisition time, and offers a better trade-off between imaging speed and quality.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Estudos Retrospectivos
10.
Magn Reson Imaging ; 72: 95-102, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32668273

RESUMO

The purpose of this study was to evaluate adipose tissue distributions and hepatic and pancreatic fat contents using a 6-point Dixon MRI technique in type 2 diabetes mellitus (T2DM), and to assess associations between fat distributions and biochemical markers of insulin resistance. Intra-abdominal MRI was investigated in 14 T2DM patients, 13 age- and sex-matched healthy controls (HC) and 11 young HC using a 3 T Prisma MRI scanner. All T2DM subjects completed a fasting comprehensive metabolic panel, and demographic measurements were taken according to standardized methodologies. We observed excellent correlation (R2 = 0.94) between hepatic fat fraction quantified using 6-point Dixon MRI and gold standard MRS, establishing the accuracy and reliability of the Dixon technique. Significantly increased visceral adipose tissue (VAT) volumes were found in T2DM patients compared to age-matched HC (1569.81 ± 670.62 cm3 vs. 1106.60 ± 566.85 cm3, p = .04). We also observed a trend of increasing subcutaneous adipose tissues (SAT), and total abdominal fat (TAT) volumes in T2DM compared to age-matched HC. Hepatic fat fraction percentage (HFF%) was 44.6% higher in T2DM compared to age-matched HC and 64.4% higher compared to young HC. Pancreatic fat fractions in the head and body/tail were higher in T2DM patients compared to both healthy cohorts. We also observed correlations between fat contents of the liver and pancreas in T2DM patients, and association between biochemical markers of T2DM with HFF, indicating a risk for non-alcoholic fatty liver disease among T2DM. In summary, this study provides evidence of T2DM patients having increased liver and pancreatic fat, as well as increased adipose tissues.


Assuntos
Gordura Abdominal/patologia , Diabetes Mellitus Tipo 2/patologia , Fígado/patologia , Pâncreas/patologia , Gordura Abdominal/diagnóstico por imagem , Adulto , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Feminino , Humanos , Resistência à Insulina , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
11.
IEEE Trans Med Imaging ; 36(6): 1209-1220, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28141518

RESUMO

This paper presents and analyzes an alternative formulation of the locally low-rank (LLR) regularization framework for magnetic resonance image (MRI) reconstruction. Generally, LLR-based MRI reconstruction techniques operate by dividing the underlying image into a collection of matrices formed from image patches. Each of these matrices is assumed to have low rank due to the inherent correlations among the data, whether along the coil, temporal, or multi-contrast dimensions. The LLR regularization has been successful for various MRI applications, such as parallel imaging and accelerated quantitative parameter mapping. However, a major limitation of most conventional implementations of the LLR regularization is the use of multiple sets of overlapping patches. Although the use of overlapping patches leads to effective shift-invariance, it also results in high-computational load, which limits the practical utility of the LLR regularization for MRI. To circumvent this problem, alternative LLR-based algorithms instead shift a single set of non-overlapping patches at each iteration, thereby achieving shift-invariance and avoiding block artifacts. A novel contribution of this paper is to provide a mathematical framework and justification of LLR regularization with iterative random patch adjustments (LLR-IRPA). This method is compared with a state-of-the-art LLR regularization algorithm based on overlapping patches, and it is shown experimentally that results are similar but with the advantage of much reduced computational load. We also present theoretical results demonstrating the effective shift invariance of the LLR-IRPA approach, and we show reconstruction examples and comparisons in both retrospectively and prospectively undersampled MRI acquisitions, and in T1 parameter mapping.


Assuntos
Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA