Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Water Res X ; 15: 100131, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35402889

RESUMO

Nitrification, the oxidation of ammonia to nitrate via nitrite, is important for many engineered water treatment systems. The sequential steps of this respiratory process are carried out by distinct microbial guilds, including ammonia-oxidizing bacteria (AOB) and archaea (AOA), nitrite-oxidizing bacteria (NOB), and newly discovered members of the genus Nitrospira that conduct complete ammonia oxidation (comammox). Even though all of these nitrifiers have been identified within water treatment systems, their relative contributions to nitrogen cycling are poorly understood. Although AOA contribute to nitrification in many wastewater treatment plants, they are generally outnumbered by AOB. In contrast, AOA and comammox Nitrospira typically dominate relatively low ammonia environments such as drinking water treatment, tertiary wastewater treatment systems, and aquaculture/aquarium filtration. Studies that focus on the abundance of ammonia oxidizers may misconstrue the actual role that distinct nitrifying guilds play in a system. Understanding which ammonia oxidizers are active is useful for further optimization of engineered systems that rely on nitrifiers for ammonia removal. This review highlights known distributions of AOA and comammox Nitrospira in engineered water treatment systems and suggests future research directions that will help assess their contributions to nitrification and identify factors that influence their distributions and activity.

2.
ISME J ; 14(9): 2366, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32651453

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
ISME J ; 14(7): 1857-1872, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332864

RESUMO

Nitrification, the oxidation of ammonia to nitrate via nitrite, is an important process in municipal wastewater treatment plants (WWTPs). Members of the Nitrospira genus that contribute to complete ammonia oxidation (comammox) have only recently been discovered and their relevance to engineered water treatment systems is poorly understood. This study investigated distributions of Nitrospira, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in biofilm samples collected from tertiary rotating biological contactors (RBCs) of a municipal WWTP in Guelph, Ontario, Canada. Using quantitative PCR (qPCR), 16S rRNA gene sequencing, and metagenomics, our results demonstrate that Nitrospira species strongly dominate RBC biofilm samples and that comammox Nitrospira outnumber all other nitrifiers. Genome bins recovered from assembled metagenomes reveal multiple populations of comammox Nitrospira with distinct spatial and temporal distributions, including several taxa that are distinct from previously characterized Nitrospira members. Diverse functional profiles imply a high level of niche heterogeneity among comammox Nitrospira, in contrast to the sole detected AOA representative that was previously cultivated and characterized from the same RBC biofilm. Our metagenome bins also reveal two cyanase-encoding populations of comammox Nitrospira, suggesting an ability to degrade cyanate, which has only been shown previously for several Nitrospira representatives that are strict nitrite oxidizers. This study demonstrates the importance of RBCs as model systems for continued investigation of environmental factors that control the distributions and activities of AOB, AOA, comammox Nitrospira, and other nitrite oxidizers.


Assuntos
Produtos Biológicos , Microbiota , Purificação da Água , Amônia , Archaea/genética , Bactérias/genética , Canadá , Nitrificação , Nitritos , Oxirredução , RNA Ribossômico 16S/genética
4.
mSphere ; 4(1)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787117

RESUMO

Although aquaria are common features of homes and other buildings, little is known about how environmental perturbations (i.e., tank cleaning, water changes, addition of habitat features) impact the diversity and succession of aquarium microbial communities. In this study, we sought to evaluate the hypotheses that newly established aquaria show clear microbial successional patterns over time and that common marine aquarium-conditioning practices, such as the addition of ocean-derived "live rocks" (defined as any "dead coral skeleton covered with crustose coralline algae" transferred into an aquarium from open ocean habitats) impact the diversity of microbial populations as well as nitrogen cycling in aquaria. We collected water chemistry data alongside water and sediment samples from two independent and newly established saltwater aquaria over a 3-month period. Microbial communities in samples were assessed by DNA extraction, amplification of the 16S rRNA gene, and Illumina MiSeq sequencing. Our results showed clear and replicable patterns of community succession in both aquaria, with the existence of multiple stable states for aquarium microbial assemblages. Notably, our results show that changes in aquarium microbial communities do not always correlate with water chemistry measurements and that operational taxonomic unit (OTU)-level patterns relevant to nitrogen cycling were not reported as statistically significant. Overall, our results demonstrate that aquarium perturbations have a substantial impact on microbial community profiles of aquarium water and sediment and that the addition of live rocks improves nutrient cycling by shifting aquarium communities toward a more typical saltwater assemblage of microbial taxa.IMPORTANCE Saltwater aquaria are living systems that support a complex biological community of fish, invertebrates, and microbes. The health and maintenance of saltwater tanks are pressing concerns for home hobbyists, zoos, and professionals in the aquarium trade; however, we do not yet understand the underlying microbial species interactions and community dynamics which contribute to tank setup and conditioning. This report provides a detailed view of ecological succession and changes in microbial community assemblages in two saltwater aquaria which were sampled over a 3-month period, from initial tank setup and conditioning with "live rocks" through subsequent tank cleanings and water replacement. Our results showed that microbial succession appeared to be consistent and replicable across both aquaria. However, changes in microbial communities did not always correlate with water chemistry measurements, and aquarium microbial communities appear to have shifted among multiple stable states without any obvious buildup of undesirable nitrogen compounds in the tank environment.


Assuntos
Archaea/classificação , Bactérias/classificação , Ecossistema , Microbiota , Salinidade , Água/química , Compostos de Amônio/análise , Archaea/fisiologia , Código de Barras de DNA Taxonômico , DNA Arqueal , DNA Bacteriano/genética , Nitratos/análise , Nitritos/análise , Ciclo do Nitrogênio , Filogenia , RNA Ribossômico 16S/genética
5.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959256

RESUMO

Ammonia is a metabolic waste product excreted by aquatic organisms that causes toxicity when it accumulates. Aquaria and aquaculture systems therefore use biological filters that promote the growth of nitrifiers to convert ammonia to nitrate. Ammonia-oxidizing bacteria (AOB) have been isolated from aquarium biofilters and are available as commercial supplements, but recent evidence suggests that ammonia-oxidizing archaea (AOA) are abundant in aquarium biofilters. In this study, we report the cultivation and closed genome sequence of the novel AOA representative "Candidatus Nitrosotenuis aquarius," which was enriched from a freshwater aquarium biofilter. "Ca Nitrosotenuis aquarius" oxidizes ammonia stoichiometrically to nitrite with a concomitant increase in thaumarchaeotal cells and a generation time of 34.9 h. "Ca Nitrosotenuis aquarius" has an optimal growth temperature of 33°C, tolerates up to 3 mM NH4Cl, and grows optimally at 0.05% salinity. Transmission electron microscopy revealed that "Ca Nitrosotenuis aquarius" cells are rod shaped, with a diameter of ∼0.4 µm and length ranging from 0.6 to 3.6 µm. In addition, these cells possess surface layers (S-layers) and multiple proteinaceous appendages. Phylogenetically, "Ca Nitrosotenuis aquarius" belongs to the group I.1a Thaumarchaeota, clustering with environmental sequences from freshwater aquarium biofilters, aquaculture systems, and wastewater treatment plants. The complete 1.70-Mbp genome contains genes involved in ammonia oxidation, bicarbonate assimilation, flagellum synthesis, chemotaxis, S-layer production, defense, and protein glycosylation. Incubations with differential inhibitors indicate that "Ca Nitrosotenuis aquarius"-like AOA contribute to ammonia oxidation within the aquarium biofilter from which it originated.IMPORTANCE Nitrification is a critical process for preventing ammonia toxicity in engineered biofilter environments. This work describes the cultivation and complete genome sequence of a novel AOA representative enriched from a freshwater aquarium biofilter. In addition, despite the common belief in the aquarium industry that AOB mediate ammonia oxidation, the present study suggests an in situ role for "Ca Nitrosotenuis aquarius"-like AOA in freshwater aquarium biofilters.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Água Doce/microbiologia , Filtros Microporos/microbiologia , Purificação da Água/instrumentação , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Genoma Arqueal , Nitrificação , Nitritos/metabolismo , Oxirredução , Filogenia , Águas Residuárias/química , Águas Residuárias/microbiologia
6.
ISME J ; 11(5): 1142-1157, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28195581

RESUMO

Thaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia environments. However, the activity, physiology and metabolism of WWTP-associated AOA remain poorly understood. We report the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario (Canada). In enrichment culture, Ca. N. exaquare oxidizes ammonia to nitrite stoichiometrically, is mesophilic, and tolerates at least 15 mm of ammonium chloride or sodium nitrite. Microautoradiography (MAR) for enrichment cultures demonstrates that Ca. N. exaquare assimilates bicarbonate in association with ammonia oxidation. However, despite using inorganic carbon, the ammonia-oxidizing activity of Ca. N. exaquare is greatly stimulated in enrichment culture by the addition of organic compounds, especially malate and succinate. Ca. N. exaquare cells are coccoid with a diameter of ~1-2 µm. Phylogenetically, Ca. N. exaquare belongs to the Nitrososphaera sister cluster within the Group I.1b Thaumarchaeota, a lineage which includes most other reported AOA sequences from municipal and industrial WWTPs. The 2.99 Mbp genome of Ca. N. exaquare encodes pathways for ammonia oxidation, bicarbonate fixation, and urea transport and breakdown. In addition, this genome encodes several key genes for dealing with oxidative stress, including peroxidase and catalase. Incubations of WWTP biofilm demonstrate partial inhibition of ammonia-oxidizing activity by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), suggesting that Ca. N. exaquare-like AOA may contribute to nitrification in situ. However, CARD-FISH-MAR showed no incorporation of bicarbonate by detected Thaumarchaeaota, suggesting that detected AOA may incorporate non-bicarbonate carbon sources or rely on an alternative and yet unknown metabolism.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Águas Residuárias/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Carbono/metabolismo , Genoma Arqueal , Nitrificação , Nitritos/metabolismo , Oxirredução , Filogenia
7.
FEMS Microbiol Lett ; 363(7)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26946536

RESUMO

Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 µM) and methylene blue hydrate (3 µM) was comparable to carboxy-PTIO (100 µM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.


Assuntos
Amônia/metabolismo , Archaea/efeitos dos fármacos , Archaea/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Óxido Nítrico/metabolismo , Microbiologia do Solo , Amônia/antagonistas & inibidores , Benzenossulfonatos/farmacologia , Benzoatos/farmacologia , Betaproteobacteria/efeitos dos fármacos , Betaproteobacteria/metabolismo , Ácidos Cafeicos/farmacologia , Cromanos/farmacologia , Curcumina/farmacologia , Imidazóis/farmacologia , Nitrificação , Nitrosomonas europaea/efeitos dos fármacos , Nitrosomonas europaea/metabolismo , Oxirredução/efeitos dos fármacos , Filogenia
8.
ISME J ; 9(2): 461-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25126756

RESUMO

Cobalamin (vitamin B12) is a complex metabolite and essential cofactor required by many branches of life, including most eukaryotic phytoplankton. Algae and other cobalamin auxotrophs rely on environmental cobalamin supplied from a relatively small set of cobalamin-producing prokaryotic taxa. Although several Bacteria have been implicated in cobalamin biosynthesis and associated with algal symbiosis, the involvement of Archaea in cobalamin production is poorly understood, especially with respect to the Thaumarchaeota. Based on the detection of cobalamin synthesis genes in available thaumarchaeotal genomes, we hypothesized that Thaumarchaeota, which are ubiquitous and abundant in aquatic environments, have an important role in cobalamin biosynthesis within global aquatic ecosystems. To test this hypothesis, we examined cobalamin synthesis genes across sequenced thaumarchaeotal genomes and 430 metagenomes from a diverse range of marine, freshwater and hypersaline environments. Our analysis demonstrates that all available thaumarchaeotal genomes possess cobalamin synthesis genes, predominantly from the anaerobic pathway, suggesting widespread genetic capacity for cobalamin synthesis. Furthermore, although bacterial cobalamin genes dominated most surface marine metagenomes, thaumarchaeotal cobalamin genes dominated metagenomes from polar marine environments, increased with depth in marine water columns, and displayed seasonality, with increased winter abundance observed in time-series datasets (e.g., L4 surface water in the English Channel). Our results also suggest niche partitioning between thaumarchaeotal and cyanobacterial ribosomal and cobalamin synthesis genes across all metagenomic datasets analyzed. These results provide strong evidence for specific biogeographical distributions of thaumarchaeotal cobalamin genes, expanding our understanding of the global biogeochemical roles played by Thaumarchaeota in aquatic environments.


Assuntos
Archaea/genética , Metagenoma , Vitamina B 12/biossíntese , Microbiologia da Água , Archaea/metabolismo , Ecossistema , Genes Arqueais , Genes Bacterianos , Genoma Arqueal , Metagenômica , Vitamina B 12/metabolismo
9.
PLoS One ; 9(12): e113515, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479061

RESUMO

Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium biofilters, and that AOA community composition within a given aquarium is stable over time and across biofilter support material types.


Assuntos
Archaea/metabolismo , Água Doce/microbiologia , Oxirredução , RNA Ribossômico 16S/genética , Amônia/metabolismo , Archaea/genética , Bactérias/metabolismo , Filtração , Água Doce/química , Oxirredutases , Microbiologia do Solo
10.
Environ Microbiol ; 14(9): 2589-600, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22639927

RESUMO

The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creating an ammonia gradient along the flowpath. This RBC system provides a valuable experimental system for testing the hypothesis that ammonia concentration determines the relative abundance of AOA and AOB. The results demonstrate that AOA increased as ammonium decreased across the RBC flowpath, as indicated by qPCR for thaumarchaeal amoA and 16S rRNA genes, and core lipid (CL) and intact polar lipid (IPL) crenarchaeol abundances. Overall, there was a negative logarithmic relationship (R(2) =0.51) between ammonium concentration and the relative abundance of AOA amoA genes. A single AOA population was detected in the RBC biofilms; this phylotype shared low amoA and 16S rRNA gene homology with existing AOA cultures and enrichments. These results provide evidence that ammonia availability influences the relative abundances of AOA and AOB, and that AOA are abundant in some municipal wastewater treatment systems.


Assuntos
Amônia/metabolismo , Archaea/classificação , Archaea/metabolismo , Águas Residuárias/microbiologia , Purificação da Água , Amônia/análise , Archaea/genética , Genes Arqueais/genética , Variação Genética , Lipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Águas Residuárias/química
11.
PLoS One ; 6(8): e23281, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858055

RESUMO

Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.


Assuntos
Amônia/metabolismo , Archaea/genética , Archaea/metabolismo , Microbiologia da Água , Aquicultura/instrumentação , Archaea/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Filtração/instrumentação , Água Doce/microbiologia , Regulação Enzimológica da Expressão Gênica , Variação Genética , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA