Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
ACS Chem Biol ; 19(2): 563-574, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232960

RESUMO

The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.


Assuntos
Descoberta de Drogas , SARS-CoV-2 , Descoberta de Drogas/métodos , SARS-CoV-2/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular
2.
J Chem Inf Model ; 64(1): 150-163, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38117131

RESUMO

This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.


Assuntos
Trifosfato de Adenosina , Adenilato Quinase , Adenilato Quinase/química , Ligantes , Apoenzimas/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Conformação Proteica
3.
Sci Adv ; 8(44): eabm4089, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332013

RESUMO

Enzymatic catalysis is critically dependent on selectivity, active site architecture, and dynamics. To contribute insights into the interplay of these properties, we established an approach with NMR, crystallography, and MD simulations focused on the ubiquitous phosphotransferase adenylate kinase (AK) isolated from Odinarchaeota (OdinAK). Odinarchaeota belongs to the Asgard archaeal phylum that is believed to be the closest known ancestor to eukaryotes. We show that OdinAK is a hyperthermophilic trimer that, contrary to other AK family members, can use all NTPs for its phosphorylation reaction. Crystallographic structures of OdinAK-NTP complexes revealed a universal NTP-binding motif, while 19F NMR experiments uncovered a conserved and rate-limiting dynamic signature. As a consequence of trimerization, the active site of OdinAK was found to be lacking a critical catalytic residue and is therefore considered to be "atypical." On the basis of discovered relationships with human monomeric homologs, our findings are discussed in terms of evolution of enzymatic substrate specificity and cold adaptation.


Assuntos
Adenilato Quinase , Archaea , Humanos , Archaea/genética , Adenilato Quinase/química , Catálise , Domínio Catalítico
4.
Biochemistry ; 60(28): 2246-2258, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34250801

RESUMO

Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.


Assuntos
Adenilato Quinase/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/química , Simulação de Dinâmica Molecular , Conformação Proteica
5.
Org Lett ; 21(17): 6946-6950, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31419146

RESUMO

We report the synthesis of 6-arylthio-substituted-N-alkenyl 2-pyridones by ring opening of bicyclic thiazolino-2-pyridones with arynes. Varied functionalization was used to investigate scope and substituent influences on reactivity. Selected conditions favor thioether ring opening over [4 + 2] cycloaddition and an unusual aryne incorporating ring expansion. Deuterium labeling was used to clarify observed reactivity. Using the knowledge, we produced drug-like molecules with complex substitution patterns and show how thioether ring opening can be used on scaffolds with competing reactivities.


Assuntos
Derivados de Benzeno/química , Piridonas/síntese química , Tiazóis/química , Reação de Cicloadição , Estrutura Molecular , Piridonas/química
6.
Environ Microbiol ; 21(4): 1321-1330, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30773776

RESUMO

DmpR is the obligate transcriptional activator of genes involved in (methyl)phenol catabolism by Pseudomonas putida. DmpR belongs to the AAA+ class of mechano-transcriptional regulators that employ ATP-hydrolysis to engage and remodel σ54 -RNA polymerase to allow transcriptional initiation. Previous work has established that binding of phenolic effectors by DmpR is a prerequisite to relieve interdomain repression and allow ATP-binding to trigger transition to its active multimeric conformation, and further that a structured interdomain linker between the effector- and ATP-binding domains is involved in coupling these processes. Here, we present evidence from ATPase and in vivo and in vitro transcription assays that a tyrosine residue of the interdomain linker (Y233) serves as a gatekeeper to constrain ATP-hydrolysis and aromatic effector-responsive transcriptional activation by DmpR. An alanine substitution of Y233A results in both increased ATPase activity and enhanced sensitivity to aromatic effectors. We propose a model in which effector-binding relocates Y233 to synchronize signal-reception with multimerisation to provide physiologically appropriate sensitivity of the transcriptional response. Given that Y233 counterparts are present in many ligand-responsive mechano-transcriptional regulators, the model is likely to be pertinent for numerous members of this family and has implications for development of enhanced sensitivity of biosensor used to detect pollutants.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Transativadores/metabolismo , Ativação Transcricional/genética , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Cresóis/metabolismo , Regulação Bacteriana da Expressão Gênica , Metabolismo/genética , Ligação Proteica , Pseudomonas putida/genética , Fatores de Transcrição/genética
7.
Sci Rep ; 8(1): 8658, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29855503

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

8.
J Med Chem ; 61(9): 4165-4175, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29667825

RESUMO

Listeria monocytogenes is a bacterial pathogen that controls much of its virulence through the transcriptional regulator PrfA. In this study, we describe structure-guided design and synthesis of a set of PrfA inhibitors based on ring-fused 2-pyridone heterocycles. Our most effective compound decreased virulence factor expression, reduced bacterial uptake into eukaryotic cells, and improved survival of chicken embryos infected with L. monocytogenes compared to previously identified compounds. Crystal structures identified an intraprotein "tunnel" as the main inhibitor binding site (AI), where the compounds participate in an extensive hydrophobic network that restricts the protein's ability to form functional DNA-binding helix-turn-helix (HTH) motifs. Our studies also revealed a hitherto unsuspected structural plasticity of the HTH motif. In conclusion, we have designed 2-pyridone analogues that function as site-AI selective PrfA inhibitors with potent antivirulence properties.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/metabolismo , Fatores de Terminação de Peptídeos/antagonistas & inibidores , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Embrião de Galinha , Listeria monocytogenes/patogenicidade , Modelos Moleculares , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Conformação Proteica , Virulência/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 115(12): 3012-3017, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507216

RESUMO

Enzymatic substrate selectivity is critical for the precise control of metabolic pathways. In cases where chemically related substrates are present inside cells, robust mechanisms of substrate selectivity are required. Here, we report the mechanism utilized for catalytic ATP versus GTP selectivity during adenylate kinase (Adk) -mediated phosphorylation of AMP. Using NMR spectroscopy we found that while Adk adopts a catalytically competent and closed structural state in complex with ATP, the enzyme is arrested in a catalytically inhibited and open state in complex with GTP. X-ray crystallography experiments revealed that the interaction interfaces supporting ATP and GTP recognition, in part, are mediated by coinciding residues. The mechanism provides an atomic view on how the cellular GTP pool is protected from Adk turnover, which is important because GTP has many specialized cellular functions. In further support of this mechanism, a structure-function analysis enabled by synthesis of ATP analogs suggests that a hydrogen bond between the adenine moiety and the backbone of the enzyme is vital for ATP selectivity. The importance of the hydrogen bond for substrate selectivity is likely general given the conservation of its location and orientation across the family of eukaryotic protein kinases.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Guanosina Trifosfato/metabolismo , Inibidores de Adenilil Ciclases/química , Inibidores de Adenilil Ciclases/farmacologia , Inosina Trifosfato/genética , Inosina Trifosfato/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Sci Rep ; 7(1): 17151, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215017

RESUMO

Peroxiredoxins (Prxs) are vital regulators of intracellular reactive oxygen species levels in all living organisms. Their activity depends on one or two catalytically active cysteine residues, the peroxidatic Cys (CP) and, if present, the resolving Cys (CR). A detailed catalytic cycle has been derived for typical 2-Cys Prxs, however, little is known about the catalytic cycle of 1-Cys Prxs. We have characterized Prx6 from the cyanobacterium Anabaena sp. strain PCC7120 (AnPrx6) and found that in addition to the expected peroxidase activity, AnPrx6 can act as a molecular chaperone in its dimeric state, contrary to other Prxs. The AnPrx6 crystal structure at 2.3 Å resolution reveals different active site conformations in each monomer of the asymmetric obligate homo-dimer. Molecular dynamic simulations support the observed structural plasticity. A FSH motif, conserved in 1-Cys Prxs, precedes the active site PxxxTxxCp signature and might contribute to the 1-Cys Prx reaction cycle.


Assuntos
Anabaena/metabolismo , Chaperonas Moleculares/metabolismo , Peroxirredoxina VI/química , Peroxirredoxina VI/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Oxirredução , Conformação Proteica , Multimerização Proteica
11.
Proc Natl Acad Sci U S A ; 114(24): 6298-6303, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559350

RESUMO

Proteins can bind target molecules through either induced fit or conformational selection pathways. In the conformational selection model, a protein samples a scarcely populated high-energy state that resembles a target-bound conformation. In enzymatic catalysis, such high-energy states have been identified as crucial entities for activity and the dynamic interconversion between ground states and high-energy states can constitute the rate-limiting step for catalytic turnover. The transient nature of these states has precluded direct observation of their properties. Here, we present a molecular description of a high-energy enzyme state in a conformational selection pathway by an experimental strategy centered on NMR spectroscopy, protein engineering, and X-ray crystallography. Through the introduction of a disulfide bond, we succeeded in arresting the enzyme adenylate kinase in a closed high-energy conformation that is on-pathway for catalysis. A 1.9-Å X-ray structure of the arrested enzyme in complex with a transition state analog shows that catalytic sidechains are properly aligned for catalysis. We discovered that the structural sampling of the substrate free enzyme corresponds to the complete amplitude that is associated with formation of the closed and catalytically active state. In addition, we found that the trapped high-energy state displayed improved ligand binding affinity, compared with the wild-type enzyme, demonstrating that substrate binding to the high-energy state is not occluded by steric hindrance. Finally, we show that quenching of fast time scale motions observed upon ligand binding to adenylate kinase is dominated by enzyme-substrate interactions and not by intramolecular interactions resulting from the conformational change.


Assuntos
Adenilato Quinase/química , Adenilato Quinase/metabolismo , Adenilato Quinase/genética , Substituição de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Termodinâmica
12.
Proc Natl Acad Sci U S A ; 113(51): 14733-14738, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930316

RESUMO

Infection by the human bacterial pathogen Listeria monocytogenes is mainly controlled by the positive regulatory factor A (PrfA), a member of the Crp/Fnr family of transcriptional activators. Published data suggest that PrfA requires the binding of a cofactor for full activity, and it was recently proposed that glutathione (GSH) could fulfill this function. Here we report the crystal structures of PrfA in complex with GSH and in complex with GSH and its cognate DNA, the hly operator PrfA box motif. These structures reveal the structural basis for a GSH-mediated allosteric mode of activation of PrfA in the cytosol of the host cell. The crystal structure of PrfAWT in complex only with DNA confirms that PrfAWT can adopt a DNA binding-compatible structure without binding the GSH activator molecule. By binding to PrfA in the cytosol of the host cell, GSH induces the correct fold of the HTH motifs, thus priming the PrfA protein for DNA interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Motivos de Aminoácidos , Cristalografia por Raios X , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Glutationa/química , Glicina/química , Ligação Proteica , Multimerização Proteica , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Virulência
13.
Cell Chem Biol ; 23(3): 404-14, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26991105

RESUMO

The transcriptional activator PrfA, a member of the Crp/Fnr family, controls the expression of some key virulence factors necessary for infection by the human bacterial pathogen Listeria monocytogenes. Phenotypic screening identified ring-fused 2-pyridone molecules that at low micromolar concentrations attenuate L. monocytogenes cellular uptake by reducing the expression of virulence genes. These inhibitors bind the transcriptional regulator PrfA and decrease its affinity for the consensus DNA-binding site. Structural characterization of this interaction revealed that one of the ring-fused 2-pyridones, compound 1, binds at two separate sites on the protein: one within a hydrophobic pocket or tunnel, located between the C- and N-terminal domains of PrfA, and the second in the vicinity of the DNA-binding helix-turn-helix motif. At both sites the compound interacts with residues important for PrfA activation and helix-turn-helix formation. Ring-fused 2-pyridones represent a new class of chemical probes for studying virulence in L. monocytogenes.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/patogenicidade , Fatores de Terminação de Peptídeos/metabolismo , Piridonas/farmacologia , Proteínas de Bactérias/genética , Sítios de Ligação/efeitos dos fármacos , Células CACO-2 , Linhagem Celular , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Modelos Moleculares , Fatores de Terminação de Peptídeos/genética , Piridonas/química , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos
14.
Nat Commun ; 6: 7644, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26138143

RESUMO

An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or 'invisible' states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme's catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes' conformational dynamics and hence their catalytic power--a key aspect in rational design of enzymes catalysing novel reactions.


Assuntos
Difosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Domínio Catalítico , Adenilato Quinase/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica
16.
J Biol Chem ; 287(33): 27510-25, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22718771

RESUMO

Plant genes that contain the G-box in their promoters are responsive to a variety of environmental stimuli. Bioinformatics analysis of transcriptome data revealed that the G-box element is significantly enriched in promoters of high light-responsive genes. From nuclear extracts of high light-treated Arabidopsis plants, we identified the AtbZIP16 transcription factor as a component binding to the G-box-containing promoter fragment of light-harvesting chlorophyll a/b-binding protein2.4 (LHCB2.4). AtbZIP16 belongs to the G-group of Arabidopsis basic region leucine zipper (bZIP) type transcription factors. Although AtbZIP16 and its close homologues AtbZIP68 and AtGBF1 bind the G-box, they do not bind the mutated half-sites of the G-box palindrome. In addition, AtbZIP16 interacts with AtbZIP68 and AtGBF1 in the yeast two-hybrid system. A conserved Cys residue was shown to be necessary for redox regulation and enhancement of DNA binding activity in all three proteins. Furthermore, transgenic Arabidopsis lines overexpressing the wild type version of bZIP16 and T-DNA insertion mutants for bZIP68 and GBF1 demonstrated impaired regulation of LHCB2.4 expression. Finally, overexpression lines for the mutated Cys variant of bZIP16 provided support for the biological significance of Cys(330) in redox regulation of gene expression. Thus, our results suggest that environmentally induced changes in the redox state regulate the activity of members of the G-group of bZIP transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação à Clorofila/biossíntese , Proteínas de Ligação à Clorofila/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredução , Plantas Geneticamente Modificadas , Ligação Proteica/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-22442221

RESUMO

The PsbP protein is an extrinsic component of photosystem II that together with PsbO and PsbQ forms the thylakoid lumenal part of the oxygen-evolving complex in higher plants. In addition to PsbP, the thylakoid lumen contains two PsbP-like proteins (PPLs) and six PsbP-domain proteins (PPDs). While the functions of the PsbP-like proteins PPL1 and PPL2 are currently under investigation, the function of the PsbP-domain proteins still remains completely unknown. PPD6 is unique among the PsbP family of proteins in that it contains a conserved disulfide bond which can be reduced in vitro by thioredoxin. The crystal structure determination of the PPD6 protein has been initiated in order to elucidate its function and to gain deeper insights into redox-regulation pathways in the thylakoid lumen. PPD6 has been expressed, purified and crystallized and preliminary X-ray diffraction data have been collected. The crystals belonged to space group P2(1), with unit-cell parameters a = 47.0, b = 64.3, c = 62.0 Å, ß = 94.2°, and diffracted to a maximum d-spacing of 2.1 Å.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Cristalização , Cristalografia por Raios X
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 10): 1203-6, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102027

RESUMO

Alkyl hydroperoxide reductase (AhpC) is a key component of a large family of thiol-specific antioxidant (TSA) proteins distributed among prokaryotes and eukaryotes. AhpC is involved in the detoxification of reactive oxygen species (ROS) and reactive sulfur species (RSS). Sequence analysis of AhpC from the cyanobacterium Anabaena sp. PCC 7120 shows that this protein belongs to the 1-Cys class of peroxiredoxins (Prxs). It has recently been reported that enhanced expression of this protein in Escherichia coli offers tolerance to multiple stresses such as heat, salt, copper, cadmium, pesticides and UV-B. However, the structural features and the mechanism behind this process remain unclear. To provide insights into its biochemical function, AhpC was expressed, purified and crystallized by the hanging-drop vapour-diffusion method. Diffraction data were collected to a maximum d-spacing of 2.5 Å using synchrotron radiation. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 80, b = 102, c = 109.6 Å. The structure of AhpC from Anabaena sp. PCC 7120 was determined by molecular-replacement methods using the human Prx enzyme hORF6 (PDB entry 1prx) as the template.


Assuntos
Anabaena/enzimologia , Peroxirredoxinas/química , Cristalização , Cristalografia por Raios X , Expressão Gênica , Peroxirredoxinas/genética , Peroxirredoxinas/isolamento & purificação
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 10): 1214-7, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102030

RESUMO

α-Actinins form antiparallel homodimers that are able to cross-link actin filaments. The protein contains three domains: an N-terminal actin-binding domain followed by a central rod domain and a calmodulin-like EF-hand domain at the C-terminus. Here, crystallization of the rod domain of Entamoeba histolytica α-actinin-2 is reported; it crystallized in space group P2(1)2(1)2(1), with unit-cell parameters a = 47.8, b = 79.1, c = 141.8 Å. A Matthews coefficient V(M) of 2.6 Å(3) Da(-1) suggests that there are two molecules and 52.5% solvent content in the asymmetric unit. A complete native data set extending to a d-spacing of 2.8 Å was collected on beamline I911-2 at MAX-lab, Sweden.


Assuntos
Actinina/química , Entamoeba histolytica/química , Actinina/análise , Cristalização , Cristalografia por Raios X
20.
Proteins ; 76(2): 343-52, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19173309

RESUMO

The ever increasing speed of DNA sequencing widens the discrepancy between the number of known gene products, and the knowledge of their function and structure. Proper annotation of protein sequences is therefore crucial if the missing information is to be deduced from sequence-based similarity comparisons. These comparisons become exceedingly difficult as the pairwise identities drop to very low values. To improve the accuracy of domain identification, we exploit the fact that the three-dimensional structures of domains are much more conserved than their sequences. Based on structure-anchored multiple sequence alignments of low identity homologues we constructed 850 structure-anchored hidden Markov models (saHMMs), each representing one domain family. Since the saHMMs are highly family specific, they can be used to assign a domain to its correct family and clearly distinguish it from domains belonging to other families, even within the same superfamily. This task is not trivial and becomes particularly difficult if the unknown domain is distantly related to the rest of the domain sequences within the family. In a search with full length protein sequences, harbouring at least one domain as defined by the structural classification of proteins database (SCOP), version 1.71, versus the saHMM database based on SCOP version 1.69, we achieve an accuracy of 99.0%. All of the few hits outside the family fall within the correct superfamily. Compared to Pfam_ls HMMs, the saHMMs obtain about 11% higher coverage. A comparison with BLAST and PSI-BLAST demonstrates that the saHMMs have consistently fewer errors per query at a given coverage. Within our recommended E-value range, the same is true for a comparison with SUPERFAMILY. Furthermore, we are able to annotate 232 proteins with 530 nonoverlapping domains belonging to 102 different domain families among human proteins labelled "unknown" in the NCBI protein database. Our results demonstrate that the saHMM database represents a versatile and reliable tool for identification of domains in protein sequences. With the aid of saHMMs, homology on the family level can be assigned, even for distantly related sequences. Due to the construction of the saHMMs, the hits they provide are always associated with high quality crystal structures. The saHMM database can be accessed via the FISH server at http://babel.ucmp.umu.se/fish/.


Assuntos
Biologia Computacional/métodos , Cadeias de Markov , Estrutura Terciária de Proteína , Bases de Dados de Proteínas , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA