Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 21, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308315

RESUMO

Tissue injury and tumorigenesis share many cellular and molecular features, including immune cell (T cells, monocytes) infiltration and inflammatory factor (cytokines, chemokines) elaboration. Their common pathobiology raises the intriguing possibility that brain injury could create a tissue microenvironment permissive for tumor formation. Leveraging several murine models of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome and two experimental methods of brain injury, we demonstrate that both optic nerve crush and diffuse traumatic brain injury induce optic glioma (OPG) formation in mice harboring Nf1-deficient preneoplastic progenitors. We further elucidate the underlying molecular and cellular mechanisms, whereby glutamate released from damaged neurons stimulates IL-1ß release by oligodendrocytes to induce microglia expression of Ccl5, a growth factor critical for Nf1-OPG formation. Interruption of this cellular circuit using glutamate receptor, IL-1ß or Ccl5 inhibitors abrogates injury-induced glioma progression, thus establishing a causative relationship between injury and tumorigenesis.


Assuntos
Lesões Encefálicas , Neurofibromatose 1 , Glioma do Nervo Óptico , Camundongos , Animais , Glioma do Nervo Óptico/metabolismo , Glioma do Nervo Óptico/patologia , Neurofibromatose 1/patologia , Microglia/metabolismo , Lesões Encefálicas/metabolismo , Neurônios/metabolismo , Carcinogênese/metabolismo , Microambiente Tumoral
2.
Front Neurol ; 14: 1269817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152638

RESUMO

Introduction: Traumatic optic neuropathy (TON) is the optic nerve injury secondary to brain trauma leading to visual impairment and vision loss. Current clinical visual function assessments often fail to detect TON due to slow disease progression and clinically silent lesions resulting in potentially delayed or missed treatment in patients with traumatic brain injury (TBI). Methods: Diffusion basis spectrum imaging (DBSI) is a novel imaging modality that can potentially fill this diagnostic gap. Twenty-two, 16-week-old, male mice were equally divided into a sham or TBI (induced by moderate Closed-Head Impact Model of Engineered Rotational Acceleration device) group. Briefly, mice were anesthetized with isoflurane (5% for 2.5 min followed by 2.5% maintenance during injury induction), had a helmet placed over the head, and were placed in a holder prior to a 2.1-joule impact. Serial visual acuity (VA) assessments, using the Virtual Optometry System, and DBSI scans were performed in both groups of mice. Immunohistochemistry (IHC) and histological analysis of optic nerves was also performed after in vivo MRI. Results: VA of the TBI mice showed unilateral or bilateral impairment. DBSI of the optic nerves exhibited bilateral involvement. IHC results of the optic nerves revealed axonal loss, myelin injury, axonal injury, and increased cellularity in the optic nerves of the TBI mice. Increased DBSI axon volume, decreased DBSI λ||, and elevated DBSI restricted fraction correlated with decreased SMI-312, decreased SMI-31, and increased DAPI density, respectively, suggesting that DBSI can detect coexisting pathologies in the optic nerves of TBI mice. Conclusion: DBSI provides an imaging modality capable of detecting subclinical changes of indirect TON in TBI mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA