Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(24): 6091-6106, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37658193

RESUMO

The evaluation of aroma properties of beverages, both analytically as well as with human sensory studies, is a challenging task and most often related to time- and cost-intensive analyses. Whisky is a spirit offering a wide variety of aroma impressions caused by a complex mixture of aroma active compounds. In the present study, methods for the efficient evaluation of aroma characteristics are evaluated for 16 whisky samples of different origins (Scotch and American). Rate all that apply (RATA) was applied as a rapid method for the sensory evaluation of whiskies. Sensory evaluation of the samples led to the determination of eight significant aroma attributes: caramel-/cream caramel-/toffee-like, vanilla-like, (canned) peach-like, phenolic, smoky, fruity, flowery and (fermented) apple-/cider-like. Chemical analysis was conducted by stir bar sorptive extraction (SBSE) coupled to gas chromatography-mass spectrometry in combination with an in-house data processing tool for semi-automated analyte detection. Through chemical analysis of the whisky samples and automated compound detection, we report over 200 mostly aroma-active volatiles. To test both approaches for their potential for sample classification, a simple classification problem (Scotch vs. American) was applied. Linear discriminant analysis (LDA) indicates both that sensory evaluation by RATA (97.86%) and the applied analytical procedure (96.94%) are suitable for the distinction between the two whisky types. In both approaches, potential markers were determined for the classification. These investigations build a solid foundation for the implementation of a versatile platform facilitating rapid and efficient aroma evaluation in various foodstuffs and beverages.

2.
Crit Rev Anal Chem ; : 1-22, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306209

RESUMO

Volatile organic compounds (VOCs) are common constituents of many consumer products. Although many VOCs are generally considered harmless at low concentrations, some compound classes represent substances of concern in relation to human (inhalation) exposure and can elicit adverse health effects, especially when concentrations build up, such as in indoor settings. Determining VOC emissions from consumer products, such as toys, utensils or decorative articles, is of utmost importance to enable the assessment of inhalation exposure under real-world scenarios with respect to consumer safety. Due to the diverse sizes and shapes of such products, as well as their differing uses, a one-size-fits-all approach for measuring VOC emissions is not possible, thus, sampling procedures must be chosen carefully to best suit the sample under investigation. This review outlines the different sampling approaches for characterizing VOC emissions from consumer products, including headspace and emission test chamber methods. The advantages and disadvantages of each sampling technique are discussed in relation to their time and cost efficiency, as well as their suitability to realistically assess VOC inhalation exposures.

3.
Sensors (Basel) ; 18(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494545

RESUMO

Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures.

4.
Sensors (Basel) ; 17(7)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657595

RESUMO

This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

5.
Sensors (Basel) ; 11(3): 3135-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163790

RESUMO

Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures.


Assuntos
Capacitância Elétrica , Eletrônica/instrumentação , Umidade , Dióxido de Silício/química , Temperatura , Ouro/química , Microscopia Eletrônica de Transmissão , Nitrogênio/química , Porosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA