Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7042, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120635

RESUMO

The influenza A virus (IAV) polymerase is a multifunctional machine that can adopt alternative configurations to perform transcription and replication of the viral RNA genome in a temporally ordered manner. Although the structure of polymerase is well understood, our knowledge of its regulation by phosphorylation is still incomplete. The heterotrimeric polymerase can be regulated by posttranslational modifications, but the endogenously occurring phosphorylations at the PA and PB2 subunits of the IAV polymerase have not been studied. Mutation of phosphosites in PB2 and PA subunits revealed that PA mutants resembling constitutive phosphorylation have a partial (S395) or complete (Y393) defect in the ability to synthesize mRNA and cRNA. As PA phosphorylation at Y393 prevents binding of the 5' promoter of the genomic RNA, recombinant viruses harboring such a mutation could not be rescued. These data show the functional relevance of PA phosphorylations to control the activity of viral polymerase during the influenza infectious cycle.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Fosforilação , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Influenza A/fisiologia , Nucleotidiltransferases/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral
2.
J Gen Virol ; 103(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771598

RESUMO

Constant evolution of influenza A viruses (IAVs) leads to the occurrence of new virus strains, which can cause epidemics and occasional pandemics. Here we compared two medically relevant IAVs, namely A/Hamburg/4/09 (H1N1pdm09) of the 2009 pandemic and the highly pathogenic avian IAV human isolate A/Thailand/1(KAN-1)/2004 (H5N1), for their ability to trigger intracellular phosphorylation patterns using a highly sensitive peptide-based kinase activity profiling approach. Virus-dependent tyrosine phosphorylations of substrate peptides largely overlap between the two viruses and are also strongly overrepresented in comparison to serine/threonine peptide phosphorylations. Both viruses trigger phosphorylations with distinct kinetics by overlapping and different kinases from which many form highly interconnected networks. As approximately half of the kinases forming a signalling hub have no known function for the IAV life cycle, we interrogated selected members of this group for their ability to interfere with IAV replication. These experiments revealed negative regulation of H1N1pdm09 and H5N1 replication by NUAK [novel (nua) kinase] kinases and by redundant ephrin A (EphA) receptor tyrosine kinases.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Vírus da Influenza A/metabolismo , Fosforilação , Proteínas Quinases , Tirosina , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
3.
Cancers (Basel) ; 13(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34298830

RESUMO

The ubiquitin E3 ligase TNF Receptor Associated Factor 6 (TRAF6) participates in a large number of different biological processes including innate immunity, differentiation and cell survival, raising the need to specify and shape the signaling output. Here, we identify a lipopolysaccharide (LPS)-dependent increase in TRAF6 association with the kinase IKKε (inhibitor of NF-κB kinase subunit ε) and IKKε-mediated TRAF6 phosphorylation at five residues. The reconstitution of TRAF6-deficient cells, with TRAF6 mutants representing phosphorylation-defective or phospho-mimetic TRAF6 variants, showed that the phospho-mimetic TRAF6 variant was largely protected from basal ubiquitin/proteasome-mediated degradation, and also from autophagy-mediated decay in autolysosomes induced by metabolic perturbation. In addition, phosphorylation of TRAF6 and its E3 ligase function differentially shape basal and LPS-triggered signaling networks, as revealed by phosphoproteome analysis. Changes in LPS-triggered phosphorylation networks of cells that had experienced autophagy are partially dependent on TRAF6 and its phosphorylation status, suggesting an involvement of this E3 ligase in the interplay between metabolic and inflammatory circuits.

4.
iScience ; 19: 527-544, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31442668

RESUMO

Membraneless organelles (MLOs) are liquid-like subcellular compartments providing spatiotemporal control to biological processes. This study reveals that cellular stress leads to the incorporation of the adaptor protein SINTBAD (TBKBP1) into membraneless, cytosolic speckles. Determination of the interactome identified >100 proteins forming constitutive and stress-inducible members of an MLO that we termed SINT-speckles. SINT-speckles partially colocalize with activated TBK1, and deletion of SINTBAD and the SINT-speckle component AZI2 leads to impaired TBK1 phosphorylation. Dynamic formation of SINT-speckles is positively controlled by the acetyltransferase KAT2A (GCN5) and antagonized by heat shock protein-mediated chaperone activity. SINT-speckle formation is also inhibited by the autophagy-initiating kinases ULK1/2, and knockdown of these kinases prevented focal TBK1 phosphorylation in a pathway-specific manner. The phlebovirus-encoded non-structural protein S enhances ULK1-mediated TBK1 phosphorylation and shows a stress-induced translocation to SINT-speckles, raising the possibility that viruses can also target this signaling hub to manipulate host cell functions.

5.
FEBS Lett ; 585(14): 2372-6, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21704619

RESUMO

The addition of N-glycans to clinically used proteins enhances their therapeutic features. Here we report the design of a novel peptide tag with an unnatural N-glycosylation site, which may increase the N-glycan content of generally any protein. The designed GlycoTags were attached to A1AT, EPO and AGP and constructs were expressed in HEK293 or CHO cells. Hereby we could prove that the attached unnatural N-glycosylation site is decorated with complex-type N-glycans and that the spacer as well as the C-terminal "tail" sequence are critical for the usage of the novel N-glycosylation site. This demonstrates that the novel GlycoTag is a convenient tool to provide proteins with extra N-glycan moieties by simply adding a peptide tag sequence as small as 22 amino acids.


Assuntos
Glicopeptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Células HEK293 , Humanos , Dados de Sequência Molecular , Peptídeos/genética , Polissacarídeos/química , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA