Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(25): 42327-42337, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087608

RESUMO

We demonstrate how the depleted pump of an optical parametric amplifier can be recycled for impulsive alignment of a molecular gas inside a hollow-core fiber and use such alignment for the broadening and frequency shift of the signal pulse at a center wavelength of ∼1300 nm. Our results combine non-adiabatic molecular alignment, self-phase modulation, and Raman non-linearities. We demonstrate spectral shifts of up to 204 nm and a spectral broadening of more than one octave. We also report on the time delays at which broadening occurs, which do not coincide with any of the molecular rotational constants. Further, we encounter that maximum frequency shifts occur when the signal and pump have perpendicular polarization instead of parallel.

2.
Rev Sci Instrum ; 94(1): 013303, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725611

RESUMO

Since their inception, velocity map imaging (VMI) techniques have received continued interest in their expansion from 2D to 3D momentum measurements through either reconstructive or direct methods. Recently, much work has been devoted to the latter of these by relating electron time-of-flight (TOF) to the third momentum component. The challenge is having a timing resolution sufficient to resolve the structure in the narrow (<10 ns) electron TOF spread. Here, we build upon the work in VMI lens design and 3D VMI measurement by using a plano-convex thick-lens (PCTL) VMI in conjunction with an event-driven camera (TPX3CAM) providing TOF information for high resolution 3D electron momentum measurements. We perform simulations to show that, with the addition of a mesh electrode to the thick-lens geometry, the resulting plano-convex electrostatic field extends the detectable electron cutoff energy range while retaining the high resolution. This design also extends the electron TOF range, allowing for a better momentum resolution along this axis. We experimentally demonstrate these capabilities by examining above-threshold ionization in xenon, where the apparatus is shown to collect electrons of energy up to ∼7 eV with a TOF spread of ∼30 ns, both of which are improved compared to a previous work by factors of ∼1.4 and ∼3.75, respectively. Finally, the PCTL-VMI is equipped with a coincident ion TOF spectrometer, which is shown to effectively extract unique 3D momentum distributions for different ionic species in a gas mixture. These techniques have the potential to lend themselves to more advanced measurements involving systems where the electron momentum distributions possess non-trivial symmetries.

3.
Opt Express ; 30(24): 44283-44289, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523106

RESUMO

Experiments requiring ultrafast laser pulses require a full characterization of the electric field to glean meaning from the experimental data. Such characterization typically requires a separate parametric optical process. As the central wavelength range of new sources continues to increase so too does the need for nonlinear crystals suited for characterizing these wavelengths. Here we report on the use of poly-crystalline zinc selenide as a universal nonlinear crystal in the frequency resolved optical gating characterization technique from the near to long-wavelength infrared. Due to its property of random quasi-phase-matching it's capable of phase matching second-harmonic and sum-frequency generation of ultra-broadband pulses in the near and long wavelength infrared, while being crystal orientation independent. With the majority of ultra-fast laser sources being in this span of wavelengths, this work demonstrates a greatly simplified approach towards ultra-fast pulse characterization spanning from the near to the long-wavelength infrared. To our knowledge there is no single optical technique capable of such flexible capabilities.

4.
Rev Sci Instrum ; 93(7): 075108, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922295

RESUMO

We present a simple approach to characterize the spatial variation of the gain in microchannel plate (MCP) coupled to phosphor detectors using single electron or photon hits. The technique is easy to implement and general enough to be extended to other kinds of detectors. We demonstrate the efficacy of the approach on both laboratory and Monte Carlo generated datasets. Furthermore, we use the approach to measure the variation in gain over time as the MCP is exposed to an increasing number of electrons.

5.
Sci Rep ; 12(1): 9277, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35660781

RESUMO

The study of nanomaterials is an active area of research for technological applications as well as fundamental science. A common method for studying properties of isolated nanoparticles is by an in-vacuum particle beam produced via an aerodynamic lens. Despite being common practice, characterization of such beams has proven difficult as light scattering detection techniques fail for particles with sizes beyond the diffraction limit. Here we present a new technique for characterizing such nanoparticle beams using strong field ionization. By focusing an ultrafast, mJ-level laser into the particle beam, a nanoparticle within the laser focus is ionized and easily detected by its ejected electrons. This method grants direct access to the nanoparticle density at the location of the focus, and by scanning the focus through the transverse and longitudinal profiles of the particle beam we attain the 3-dimensional particle density distribution for a cylindrically symmetric beam. Further, we show that strong field ionization is effective in detecting spherical nanoparticles as small as 10 nm in diameter. Additionally, this technique is an effective tool in optimizing the particle beam for specific applications. As an example we show that the particle beam density and width can be manipulated by restricting the gas flow into the aerodynamic lens.

6.
Appl Opt ; 61(30): 8873-8879, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36607012

RESUMO

The ability of spatial light modulators (SLMs) to modify the amplitude and phase of light has proved them invaluable to the optics and photonics community. In many applications, the bit-depth of SLMs is a major limiting factor dictated by a digital processor. As a result, there is usually a compromise between refresh speed and bit-depth. Here, we present a method to increase the effective bit-depth of SLMs, which utilizes a linear slope, as is commonly applied to deal with the zeroth-order effect. This technique was tested using two interferometric transient absorption spectroscopy setups. Through the high harmonic generation in gases producing a train of attosecond pulses and harmonics from solids in the ultraviolet, two pulses are generated that interfere in the far field providing a measurement of the optical phase. An increase in the precision far beyond the limit dictated by the digital processor in the bit-depth was found.

7.
Opt Express ; 29(5): 7379-7388, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726239

RESUMO

We report on an asymmetric high energy dual optical parametric amplifier (OPA) which is capable of having either the idlers, signals, or depleted pumps, relatively phase locked at commensurate or incommensurate wavelengths. Idlers and signals can be locked on the order of 200 mrad rms or better, corresponding to a 212 as jitter at λ=2 µm. The high energy arm of the OPA outputs a combined 3.5 mJ of signal and idler, while the low energy arm outputs 1.5 mJ, with the entire system being pumped with a 1 kHz, 18 mJ Ti:Sapphire laser. Both arms are independently tunable from 1080 nm-2600 nm. The combination of relative phase locking, high output power and peak intensity, and large tunability makes our OPA an ideal tool for use in difference frequency generation (DFG) in the strong pump regime, and for high peak field waveform synthesis in the near-infrared. To demonstrate this ability we generate terahertz radiation through two color waveform synthesis in air plasma and show the influence of the relative phase on the generated terahertz intensity. The ability to phase lock multiple incommensurate wavelengths at high energies opens the door to a multitude of possibilities of strong pump DFG and waveform synthesis.

8.
Opt Express ; 27(14): 19675-19691, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503724

RESUMO

Femtosecond enhancement cavities have enabled multi-10-MHz-repetition-rate coherent extreme ultraviolet (XUV) sources with photon energies exceeding 100 eV - albeit with rather severe limitations of the net conversion efficiency and of the duration of the XUV emission. Here, we explore the possibility of circumventing both these limitations by harnessing spatiotemporal couplings in the driving field, similar to the "attosecond lighthouse," in theory and experiment. Our results predict dramatically improved output coupling efficiencies and efficient generation of isolated XUV attosecond pulses.

9.
Opt Express ; 23(15): 19586-95, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367616

RESUMO

We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA