Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 63(13): 1663-1673, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885634

RESUMO

The mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) from Ideonella sakaiensis carries out the second step in the enzymatic depolymerization of poly(ethylene terephthalate) (PET) plastic into the monomers terephthalic acid (TPA) and ethylene glycol (EG). Despite its potential industrial and environmental applications, poor recombinant expression of MHETase has been an obstacle to its industrial application. To overcome this barrier, we developed an assay allowing for the medium-throughput quantification of MHETase activity in cell lysates and whole-cell suspensions, which allowed us to screen a library of engineered variants. Using consensus design, we generated several improved variants that exhibit over 10-fold greater whole-cell activity than wild-type (WT) MHETase. This is revealed to be largely due to increased soluble expression, which biochemical and structural analysis indicates is due to improved protein folding.


Assuntos
Burkholderiales , Burkholderiales/enzimologia , Burkholderiales/genética , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/química , Solubilidade , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Engenharia de Proteínas/métodos , Dobramento de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Modelos Moleculares
2.
Curr Opin Struct Biol ; 69: 131-141, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34023793

RESUMO

In addition to its value in the study of molecular evolution, ancestral sequence reconstruction (ASR) has emerged as a useful methodology for engineering proteins with enhanced properties. Proteins generated by ASR often exhibit unique or improved activity, stability, and/or promiscuity, all of which are properties that are valued by protein engineers. Comparison between extant proteins and evolutionary intermediates generated by ASR also allows protein engineers to identify substitutions that have contributed to functional innovation or diversification within protein families. As ASR becomes more widely adopted as a protein engineering approach, it is important to understand the applications, limitations, and recent developments of this technique. This review highlights recent exemplifications of ASR, as well as technical aspects of the reconstruction process that are relevant to protein engineering.


Assuntos
Evolução Molecular , Proteínas , Evolução Biológica , Humanos , Filogenia , Engenharia de Proteínas , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA