RESUMO
Clinical trials of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) therapeutics often include virological secondary endpoints to compare viral clearance and viral load reduction between treatment and placebo arms. This is typically achieved using quantitative reverse-transcriptase PCR (RT-qPCR), which cannot differentiate replicant competent virus from non-viable virus or free RNA, limiting its utility as an endpoint. Culture-based methods for SARS-CoV-2 exist; however, these are often insensitive and poorly standardized for use as clinical trial endpoints. We report optimization of a culture-based approach evaluating three cell lines, three detection methods, and key culture parameters. We show that Vero-angiotensin-converting enzyme 2-transmembrane serine protease 2 cells in combination with RT-qPCR of culture supernatants from the first passage provides the greatest overall detection of Delta viral replication (22 of 32, 68.8%), being able to identify viable virus in 83.3% (20 of 24) of clinical samples with initial Ct values of <30. Likewise, we demonstrate that RT-qPCR using culture supernatants from the first passage of Vero human signaling lymphocytic activation molecule cells provides the highest overall detection of Omicron viral replication (9 of 31, 29%), detecting live virus in 39.1% (9 of 23) of clinical samples with initial Ct values of <25. This assessment demonstrates that combining RT-qPCR with virological endpoint analysis has utility in clinical trials of therapeutics for SARS-CoV-2; however, techniques may require optimization based on dominant circulating strain. IMPORTANCE: RT-qPCR is commonly used for virological endpoints during clinical trials for antiviral therapy to determine the quantity and presence of virus in a sample. However, RT-qPCR identifies viral RNA and cannot determine if viable virus is present. Existing culture-based techniques for SARS-CoV-2 are insensitive and not sufficiently standardized to be employed as clinical study endpoints. The use of a culture system to monitor replicating viruses could mitigate the possibility of molecular techniques identifying viral RNA from inactive or lysed viral particles. The methodology optimized in this study for detecting infectious viruses may have application as a secondary virological endpoint in clinical trials of therapeutics for SARS-CoV-2 in addition to numerous research processes.
RESUMO
BACKGROUND: Pulmonary tuberculosis due to Mycobacterium tuberculosis can be challenging to diagnose when sputum samples cannot be obtained, which is especially problematic in children and older people. We systematically appraised the performance characteristics and diagnostic accuracy of upper respiratory tract sampling for diagnosing active pulmonary tuberculosis. METHODS: In this systematic review and meta-analysis, we searched MEDLINE, Cinahl, Web of Science, Global Health, and Global Health Archive databases for studies published between database inception and Dec 6, 2022 that reported on the accuracy of upper respiratory tract sampling for tuberculosis diagnosis compared with microbiological testing of sputum or gastric aspirate reference standard. We included studies that evaluated the accuracy of upper respiratory tract sampling (laryngeal swabs, nasopharyngeal aspirate, oral swabs, saliva, mouth wash, nasal swabs, plaque samples, and nasopharyngeal swabs) to be tested for microbiological diagnosis of tuberculous (by culture and nucleic acid amplification tests) compared with a reference standard using either sputum or gastric lavage for a microbiological test. We included cohort, case-control, cross-sectional, and randomised controlled studies that recruited participants from any community or clinical setting. We excluded post-mortem studies. We used a random-effects meta-analysis with a bivariate hierarchical model to estimate pooled sensitivity, specificity, and diagnostics odds ratio (DOR; odds of a positive test with disease relative to without), stratified by sampling method. We assessed bias using QUADAS-2 criteria. This study is registered with PROSPERO (CRD42021262392). FINDINGS: We screened 10 159 titles for inclusion, reviewed 274 full texts, and included 71, comprising 119 test comparisons published between May 13, 1933, and Dec 19, 2022, in the systematic review (53 in the meta-analysis). For laryngeal swabs, pooled sensitivity was 57·8% (95% CI 50·5-65·0), specificity was 93·8% (88·4-96·8), and DOR was 20·7 (11·1-38·8). Nasopharyngeal aspirate sensitivity was 65·2% (52·0-76·4), specificity was 97·9% (96·0-99·0), and DOR was 91·0 (37·8-218·8). Oral swabs sensitivity was 56·7% (44·3-68·2), specificity was 91·3% (CI 81·0-96·3), and DOR was 13·8 (5·6-34·0). Substantial heterogeneity in diagnostic accuracy was found, probably due to differences in reference and index standards. INTERPRETATION: Upper respiratory tract sampling holds promise to expand access to tuberculosis diagnosis. Exploring historical methods using modern microbiological techniques might further increase options for alternative sample types. Prospective studies are needed to optimise accuracy and utility of sampling methods in clinical practice. FUNDING: UK Medical Research Council, Wellcome, and UK Foreign, Commonwealth and Development Office.
Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Criança , Humanos , Idoso , Estudos Transversais , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Sistema RespiratórioRESUMO
OBJECTIVES: In order to generate independent performance data regarding accuracy of COVID-19 antigen-based rapid diagnostic tests (Ag-RDTs), prospective diagnostic evaluation studies across multiple sites are required to evaluate their performance in different clinical settings. This report describes the clinical evaluation the GENEDIA W COVID-19 Ag Device (Green Cross Medical Science Corp., Chungbuk, Korea) and the ActiveXpress+ COVID-19 Complete Testing Kit (Edinburgh Genetics Ltd, UK), in two testing sites Peru and the United Kingdom. METHODS: Nasopharyngeal swabs collected from 456 symptomatic patients at primary points of care in Lima, Peru and 610 symptomatic participants at a COVID-19 Drive-Through testing site in Liverpool, England were analyzed by Ag-RDT and compared to RT-PCR. Analytical evaluation of both Ag-RDTs was assessed using serial dilutions of direct culture supernatant of a clinical SARS-CoV-2 isolate from the B.1.1.7 lineage. RESULTS: For GENEDIA brand, the values of overall sensitivity and specificity were 60.4% [95% CI 52.4-67.9%], and 99.2% [95% CI 97.6-99.7%] respectively; and for Active Xpress+ the overall values of sensitivity and specificity were 66.2% [95% CI 54.0-76.5%], and 99.6% [95% CI 97.9-99.9%] respectively. The analytical limit of detection was determined at 5.0 x 102 pfu/ml what equals to approximately 1.0 x 104 gcn/ml for both Ag-RDTs. The UK cohort had lower median Ct values compared to that of Peru during both evaluations. When split by Ct, both Ag-RDTs had optimum sensitivities at Ct<20 (in Peru; 95% [95% CI 76.4-99.1%] and 100.0% [95% CI 74.1-100.0%] and in the UK; 59.2% [95% CI 44.2-73.0%] and 100.0% [95% CI 15.8-100.0%], for the GENDIA and the ActiveXpress+, respectively). CONCLUSIONS: Whilst the overall clinical sensitivity of the Genedia did not meet WHO minimum performance requirements for rapid immunoassays in either cohort, the ActiveXpress+ did so for the small UK cohort. This study illustrates comparative performance of Ag-RDTs across two global settings and considers the different approaches in evaluation methods.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Peru , Estudos Prospectivos , Reino Unido , Teste para COVID-19RESUMO
BACKGROUND: Rapid determination of an individual's antibody status can be beneficial in understanding an individual's immune response to SARS-CoV-2 and for initiation of therapies that are only deemed effective in sero-negative individuals. Antibody lateral flow tests (LFTs) have potential to address this need as a rapid, point of care test. METHODS: Here we present a proof-of-concept evaluation of eight LFT brands using sera from 95 vaccinated individuals to determine sensitivity for detecting vaccination generated antibodies. Samples were analysed on eight different brands of antibody LFT and an automated chemiluminescent microparticle immunoassay (CMIA) that identifies anti-spike antibodies which was used as our reference standard. RESULTS: All 95 (100%) participants tested positive for anti-spike antibodies by the chemiluminescent microparticle immunoassay (CMIA) reference standard post-dose two of their SARS-CoV-2 vaccine: BNT162b2 (Pfizer/BioNTech, n = 60), AZD1222 (AstraZeneca, n = 31), mRNA-1273 (Moderna, n = 2) and Undeclared Vaccine Brand (n = 2). Sensitivity increased from dose one to dose two in six out of eight LFTs with three tests achieving 100% sensitivity at dose two in detecting anti-spike antibodies. CONCLUSIONS: These tests are demonstrated to be highly sensitive to detect raised antibody levels in vaccinated individuals. RDTs are low cost and rapid alternatives to ELISA based systems.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Antivirais , VacinaçãoRESUMO
Background: In 2018, the National Institute for Health Research launched Draft Standards for Public Involvement in Research. The Northern Ireland Cerebral Palsy Register (NICPR) was competitively selected as a "test-bed" project to pilot the Draft Standards over a one-year period. Aim: This perspective paper aims to describe the NICPR's experience of piloting the Draft Standards for Public Involvement in Research, highlighting successes and challenges. Method: Three of the six Draft Standards were piloted from April 2018 to April 2019: Standard 2 "working together", Standard 4 "communications" and Standard 5, "impact". Results: Implementation of Standard 2 resulted in formation of a dedicated Public Involvement Group. Standard 4 was implemented by revision of the NICPR's Privacy Notice and development of the NICPR website. Standard 5 was not implemented during the test-bed pilot period. Discussion: Benefits of use of the Draft Standards in cerebral palsy register research included development of relationships, improving quality, accessibility and relevance of NICPR materials, increasing skills and confidence, networking opportunities, advocating for others and feeling empowered to shape cerebral palsy research. Challenges included administrative issues, absence of dedicated and sustained funding, limitations in the availability and applicability of public involvement training and the time required for meaningful public involvement. Conclusions: Standards for Public Involvement provide a useful framework for structuring and embedding meaningful public involvement. Sustained, authentic public involvement in cerebral palsy register research ensures that people affected by the condition are empowered to engage, inform, develop and lead research that meets their needs.
RESUMO
BACKGROUND: Rapid diagnostic tests (RDTs) developed for point of care detection of SARS-CoV-2 antigen are recommended by WHO to use trained health care workers to collect samples. We hypothesised that self-taken samples are non-inferior for use with RDTs to diagnose COVID-19. We designed a prospective diagnostic evaluation comparing self-taken and healthcare worker (HCW)-taken throat/nasal swabs to perform RDTs for SARS-CoV-2, and how these compare to RT-PCR. METHODS: Eligible participants 18 years or older with symptoms of COVID-19. 250 participants recruited at the NHS Test and Trace drive-through community PCR testing site (Liverpool, UK); one withdrew before analysis. Self-administered throat/nasal swab for the Covios® RDT, a trained HCW taken throat/nasal sample for PCR and HCW comparison throat/nasal swab for RDT were collected. RDT results were compared to RT-PCR, as the reference standard, to calculate sensitivity and specificity. FINDINGS: Seventy-five participants (75/249, 30.1%) were positive by RT-PCR. RDTs with self-taken swabs had a sensitivity of 90.5% (67/74, 95% CI: 83.9-97.2), compared to 78.4% (58/74, 95% CI: 69.0-87.8) for HCW-taken swabs (absolute difference 12.2%, 95% CI: 4.7-19.6, p = 0.003). Specificity for self-taken swabs was 99.4% (173/174, 95% CI: 98.3-100.0), versus 98.9% (172/174, 95% CI: 97.3-100.0) for HCW-taken swabs (absolute difference 0.6%, 95% CI: 0.5-1.7, p = 0.317). The PPV of self-taken RDTs (98.5%, 67/68, 95% CI: 95.7-100.0) and HCW-taken RDTs (96.7%, 58/60, 95% CI 92.1-100.0) were not significantly different (p = 0.262). However, the NPV of self-taken swab RDTs was significantly higher (96.1%, 173/180, 95% CI: 93.2-98.9) than HCW-taken RDTs (91.5%, 172/188, 95% CI 87.5-95.5, p = 0.003). INTERPRETATION: In conclusion, self-taken swabs for COVID-19 testing offer an accurate alternative to healthcare worker taken swabs for use with RDTs. Our results demonstrate that, with no training, self-taken throat/nasal samples can be used by lay individuals as part of rapid testing programmes for symptomatic adults. This is especially important where the lack of trained healthcare workers restricts access to testing.
Assuntos
Teste para COVID-19 , COVID-19 , Adulto , COVID-19/diagnóstico , Pessoal de Saúde , Humanos , Estudos Prospectivos , SARS-CoV-2/genética , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).
Assuntos
Genoma Humano , Doenças Raras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Características da Família , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reação em Cadeia da Polimerase , Doenças Raras/diagnóstico , Sensibilidade e Especificidade , Medicina Estatal , Reino Unido , Sequenciamento Completo do Genoma , Adulto JovemRESUMO
BACKGROUND: Individuals infected with SARS-CoV-2 develop neutralising antibodies. We investigated the proportion of individuals with SARS-CoV-2 neutralising antibodies after infection and how this proportion varies with selected covariates. METHODOLOGY/PRINCIPAL FINDINGS: This systematic review and meta-analysis examined the proportion of individuals with SARS-CoV-2 neutralising antibodies after infection and how these proportions vary with selected covariates. Three models using the maximum likelihood method assessed these proportions by study group, covariates and individually extracted data (protocol CRD42020208913). A total of 983 reports were identified and 27 were included. The pooled (95%CI) proportion of individuals with neutralising antibodies was 85.3% (83.5-86.9) using the titre cut off >1:20 and 83.9% (82.2-85.6), 70.2% (68.1-72.5) and 54.2% (52.0-56.5) with titres >1:40, >1:80 and >1:160, respectively. These proportions were higher among patients with severe COVID-19 (e.g., titres >1:80, 84.8% [80.0-89.2], >1:160, 74.4% [67.5-79.7]) than those with mild presentation (56.7% [49.9-62.9] and 44.1% [37.3-50.6], respectively) and lowest among asymptomatic infections (28.6% [17.9-39.2] and 10.0% [3.7-20.1], respectively). IgG and neutralising antibody levels correlated poorly. CONCLUSIONS/SIGNIFICANCE: 85% of individuals with proven SARS-CoV-2 infection had detectable neutralising antibodies. This proportion varied with disease severity, study setting, time since infection and the method used to measure antibodies.