Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Burns Trauma ; 11: tkad043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908563

RESUMO

Background: The aim of this in vitro study was to compare side-by-side two models of human bilayered tissue-engineered skin substitutes (hbTESSs) designed for the treatment of severely burned patients. These are the scaffold-free self-assembled skin substitute (SASS) and the human plasma-based skin substitute (HPSS). Methods: Fibroblasts and keratinocytes from three humans were extracted from skin biopsies (N = 3) and cells from the same donor were used to produce both hbTESS models. For SASS manufacture, keratinocytes were seeded over three self-assembled dermal sheets comprising fibroblasts and the extracellular matrix they produced (n = 12), while for HPSS production, keratinocytes were cultured over hydrogels composed of fibroblasts embedded in either plasma as unique biomaterial (Fibrin), plasma combined with hyaluronic acid (Fibrin-HA) or plasma combined with collagen (Fibrin-Col) (n/biomaterial = 9). The production time was 46-55 days for SASSs and 32-39 days for HPSSs. Substitutes were characterized by histology, mechanical testing, PrestoBlue™-assay, immunofluorescence (Ki67, Keratin (K) 10, K15, K19, Loricrin, type IV collagen) and Western blot (type I and IV collagens). Results: The SASSs were more resistant to tensile forces (p-value < 0.01) but less elastic (p-value < 0.001) compared to HPSSs. A higher number of proliferative Ki67+ cells were found in SASSs although their metabolic activity was lower. After epidermal differentiation, no significant difference was observed in the expression of K10, K15, K19 and Loricrin. Overall, the production of type I and type IV collagens and the adhesive strength of the dermal-epidermal junction was higher in SASSs. Conclusions: This study demonstrates, for the first time, that both hbTESS models present similar in vitro biological characteristics. However, mechanical properties differ and future in vivo experiments will aim to compare their wound healing potential.

2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628718

RESUMO

Tissue-engineered skin substitutes (TESs) are used as a treatment for severe burn injuries. Their production requires culturing both keratinocytes and fibroblasts. The methods to grow these cells have evolved over the years, but bovine serum is still commonly used in the culture medium. Because of the drawbacks associated with the use of serum, it would be advantageous to use serum-free media for the production of TESs. In a previous study, we developed a serum-free medium (Surge SFM) for the culture of keratinocytes. Herein, we tested the use of this medium, together with a commercially available serum-free medium for fibroblasts (Prime XV), to produce serum-free TESs. Our results show that serum-free TESs are macroscopically and histologically similar to skin substitutes produced with conventional serum-containing media. TESs produced with either culture media expressed keratin 14, Ki-67, transglutaminase 1, filaggrin, type I and IV collagen, and fibronectin comparably. Mechanical properties, such as contraction and tensile strength, were comparable between TESs cultured with and without serum. Serum-free TESs were also successfully grafted onto athymic mice for a six-month period. In conclusion, Surge SFM and Prime XV serum-free media could be used to produce high quality clinical-grade skin substitutes.


Assuntos
Pele Artificial , Animais , Camundongos , Meios de Cultura Livres de Soro , Engenharia Tecidual , Fibroblastos , Queratinócitos , Camundongos Nus
3.
Acta Biomater ; 167: 249-259, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285897

RESUMO

Patients with deep and extensive wounds need urgent skin coverage to re-establish the cutaneous barrier that prevents life-threatening infections and dehydration. However, the current clinically-available skin substitutes intended for permanent coverage are limited in number, and a trade-off between production time and quality must be made. Here, we report the use of decellularized self-assembled dermal matrices to reduce by half the manufacturing process time of clinical-grade skin substitutes. These decellularized matrices can be stored for over 18 months and recellularized with patients' cells in order to generate skin substitutes that show outstanding histological and mechanical properties in vitro. Once grafted in mice, these substitutes persist over weeks with high graft take, few contraction events, and high stem cell content. These next-generation skin substitutes constitute a substantial advancement in the treatment of major burn patients, combining, for the first time, high functionality, rapid manufacturability and easy handling for surgeons and healthcare practitioners. Future clinical trials will be conducted to assess the advantages of these substitutes over existing treatments. STATEMENT OF SIGNIFICANCE: The number of patients in need for organ transplantation is ever-growing and there is a shortage in tissue and organ donors. In this study, we show for the first time that we can preserve decellularized self-assembled tissues and keep them in storage. Then, in only three weeks we can use them to produce bilayered skin substitutes that have properties very close to those of the native human skin. These findings therefore represent a major step forward in the field of tissue engineering and organ transplantation, paving the way toward a universal off-the-shelf biomaterial for tissue reconstruction and surgery that will be beneficial for many clinicians and patients.


Assuntos
Pele Artificial , Humanos , Camundongos , Animais , Engenharia Tecidual , Pele/patologia , Transplante de Pele , Materiais Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA