Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Chem Asian J ; : e202400637, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985241

RESUMO

We present our results on the synthesis and preliminary in silico and in vitro studies of the toxicology and antioxidant properties of selenylated analogs of Tacrine. Initially, we synthesized 2-aminobenzonitriles containing an organic selenium moiety, resulting in sixteen compounds with various substituents linked to the portion derived from diorganyl diselenide. These compounds were then used as substrates in reactions with cyclic ketones, in the presence of 1.4 equivalents of trifluoroboroetherate as a Lewis acid, to synthesize selenylated analogs of Tacrine with yields ranging from 20% to 87%. In silico studies explored computational parameters related to antioxidant activity and hepatotoxicity. In vitro studies elucidated the antioxidant effects of Tacrine and its selenium hybrid (TSe) in neutralizing ABTS radicals, scavenging DPPH radicals, and reducing iron ions. Additionally, the acute oral toxicity of one synthesized compound was evaluated.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39008059

RESUMO

RATIONALE: The compound 5-((4-methoxyphenyl)thio)benzo[c][1,2,5]thiadiazole (MTDZ) has recently been shown to inhibit in vitro acetylcholinesterase activity, reduce cognitive damage, and improve neuropsychic behavior in mice, making it a promising molecule to treat depression. OBJECTIVES: This study investigated the antidepressant-like action of MTDZ in mice and its potential mechanisms of action. RESULTS: Molecular docking assays were performed and suggested a potential inhibition of monoamine oxidase A (MAO-A) by MTDZ. The toxicity study revealed that MTDZ displayed no signs of toxicity, changes in oxidative parameters, or alterations to biochemistry markers, even at a high dose of 300 mg/kg. In behavioral tests, MTDZ administration reduced immobility behavior during the forced swim test (FST) without adjusting the climbing parameter, suggesting it has an antidepressant effect. The antidepressant-like action of MTDZ was negated with the administration of 5-HT1A, 5-HT1A/1B, and 5-HT3 receptor antagonists, implying the involvement of serotonergic pathways. Moreover, the antidepressant-like action of MTDZ was linked to the NO system, as L-arginine pretreatment inhibited its activity. The ex vivo assays indicated that MTDZ normalized ATPase activity, potentially linking this behavior to its antidepressant-like action. MTDZ treatment restricted MAO-A activity in the cerebral cortices and hippocampi of mice, proposing a selective inhibition of MAO-A associated with the antidepressant-like effect of the compound. CONCLUSIONS: These findings suggest that MTDZ may serve as a promising antidepressant agent due to its selective inhibition of MAO-A and the involvement of serotonergic and NO pathways.

3.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959771

RESUMO

Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.


Assuntos
Compostos Organosselênicos , Selênio , Oligoelementos , Antioxidantes/química , Selênio/farmacologia , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/química , Tiorredoxina Dissulfeto Redutase/metabolismo
4.
Ageing Res Rev ; 90: 102033, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595640

RESUMO

Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aß) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, ß-secretase (BACE1), Glycogen synthase kinase 3ß (GSK-3ß) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aß production, GSK-3ß is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3ß and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Glicogênio Sintase Quinase 3 beta , Peptídeos beta-Amiloides , Secretases da Proteína Precursora do Amiloide , Neurobiologia , Doenças Neuroinflamatórias , Ácido Aspártico Endopeptidases
5.
Mol Neurobiol ; 60(7): 4017-4029, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37016046

RESUMO

The role of intestinal microbiota in the genesis of mental health has received considerable attention in recent years, given that probiotics are considered promising therapeutic agents against major depressive disorder. Komagataella pastoris KM71H is a yeast with probiotic properties and antidepressant-like effects in animal models of depression. Hence, we evaluated the antidepressant-like effects of K. pastoris KM71H in a model of antibiotic-induced intestinal dysbiosis in male Swiss mice. The mice received clindamycin (200 µg, intraperitoneal) and, after 24 h, were treated with K. pastoris KM71H at a dose of 8 log CFU/animal by intragastric administration (ig) or PBS (vehicle, ig) for 14 consecutive days. Afterward, the animals were subjected to behavioral tests and biochemical analyses. Our results showed that K. pastoris KM71H administration decreased the immobility time in the tail suspension test and increased grooming activity duration in the splash test in antibiotic-treated mice, thereby characterizing its antidepressant-like effect. We observed that these effects of K. pastoris KM71H were accompanied by the modulation of the intestinal microbiota, preservation of intestinal barrier integrity, and restoration of the mRNA levels of occludin, zonula occludens-1, zonula occludens-2, and toll-like receptor-4 in the small intestine, and interleukin-1ß in the hippocampi of mice. Our findings provide solid evidence to support the development of K. pastoris KM71H as a new probiotic with antidepressant-like effects.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Masculino , Animais , Camundongos , Antibacterianos/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
6.
Psychopharmacology (Berl) ; 240(4): 935-950, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36856802

RESUMO

Physical and psychological stress modulates the hypothalamic pituitary adrenal (HPA) axis, and the redox and inflammatory systems. Impairments in these systems have been extensively reported in major depression (MD) patients. Therefore, our study aimed to investigate the effects of the intranasal administration of interleukin-4 (IL-4) in mice with depressive-like behavior induced by chronic unpredictable mild stress (CUMS) for 28 days. On the 28th day, mice received IL-4 intranasally (1 ng/mouse) or vehicle (sterile saline), and after 30 min, they were submitted to behavioral tests or euthanasia for blood collection and removal of the adrenal glands, axillary lymph nodes, spleen, thymus, prefrontal cortices (PFC), and hippocampi (HC). A single administration of IL-4 reversed CUMS-induced depression-like behavior in the tail suspension test and splash test, without evoking locomotor changes. IL-4 administration reduced the plasma levels of corticosterone and the increased weight of suprarenal glands in stressed mice. Moreover, IL-4 restored the expression of nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor kappa B (NF-kB), interleukin 1 beta (IL-1ß), IL-4, brain derived neurotrophic factor (BDNF), and indoleamine 2,3-dioxygenase (IDO) in the PFC and HC and modulated oxidative stress markers in these brain structures in stressed mice. Our results showed for the first time the antidepressant-like effect of IL-4 through the modulation of neuroinflammation and oxidative stress. The potential effect of IL-4 administered intranasally arises as an innovative strategy for MD treatment.


Assuntos
Depressão , Interleucina-4 , Camundongos , Animais , Depressão/psicologia , Doenças Neuroinflamatórias , Administração Intranasal , Estresse Oxidativo , Estresse Psicológico/psicologia , Modelos Animais de Doenças , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo
7.
Curr Med Chem ; 30(21): 2357-2395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35708081

RESUMO

Neurodegenerative and mental disorders are a public health burden with pharmacological treatments of limited efficacy. Organoselenium compounds are receiving great attention in medicinal chemistry mainly because of their antioxidant and immunomodulatory activities, with a multi-target profile that can favor the treatment of multifactorial diseases. Therefore, the purpose of this review is to discuss recent preclinical studies about organoselenium compounds as therapeutic agents for the management of mental (e.g., depression, anxiety, bipolar disorder, and schizophrenia) and neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis). We have summarized around 70 peer-reviewed articles from 2016 to the present that used in silico, in vitro, and/or in vivo approaches to assess the neuropharmacology of selenium- containing compounds. Among the diversity of organoselenium molecules investigated in the last five years, diaryl diselenides, Ebselen-derivatives, and Se-containing heterocycles are the most representative. Ultimately, this review is expected to provide disease-oriented information regarding the neuropharmacology of organoselenium compounds that can be useful for the design, synthesis, and pharmacological characterization of novel bioactive molecules that can potentially be clinically viable candidates.


Assuntos
Transtornos Mentais , Compostos Organosselênicos , Humanos , Neurofarmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Transtornos Mentais/tratamento farmacológico , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Compostos Organosselênicos/química
8.
Mol Neurobiol ; 60(3): 1733-1745, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36567360

RESUMO

Growing evidence has associated major depressive disorder (MDD) as a risk factor or prodromal syndrome for the occurrence of Alzheimer's disease (AD). Although this dilemma remains open, it is widely shown that a lifetime history of MDD is correlated with faster progression of AD pathology. Therefore, antidepressant drugs with neuroprotective effects could be an interesting therapeutic conception to target this issue simultaneously. In this sense, 1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4- carboxamide (QTC-4-MeOBnE) was initially conceived as a multi-target ligand with affinity to ß-secretase (BACE), glycogen synthase kinase 3ß (GSK3ß), and acetylcholinesterase but has also shown secondary effects on pathways involved in neuroinflammation and neurogenesis in preclinical models of AD. Herein, we investigated the effect of QTC-4-MeOBnE (1 mg/kg) administration for 45 days on depressive-like behavior and memory impairment in 3xTg mice, before the pathology is completely established. The treatment with QTC-4-MeOBnE prevented memory impairment and depressive-like behavior assessed by the Y-Maze task and forced swimming test. This effect was associated with the modulation of plural pathways involved in the onset and progression of AD, in cerebral structures of the cortex and hippocampus. Among them, the reduction of amyloid beta (Aß) production mediated by changes in amyloid precursor protein metabolism and hippocampal tau phosphorylation through the inhibition of kinases. Additionally, QTC-4-MeOBnE also exerted beneficial effects on neuroinflammation and synaptic integrity. Overall, our studies suggest that QTC-4-MeOBnE has a moderate effect in a transgenic model of AD, indicating that perhaps studies regarding the neuropsychiatric effects as a neuroprotective molecule are more prone to be feasible.


Assuntos
Doença de Alzheimer , Transtorno Depressivo Maior , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Transtorno Depressivo Maior/patologia , Doenças Neuroinflamatórias , Acetilcolinesterase/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Triazóis/farmacologia , Transtornos da Memória/complicações , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
9.
J Inorg Biochem ; 237: 112013, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183642

RESUMO

Two new Cu(II) complexes based on 4-(arylchalcogenyl)-1H-pyrazoles monodentate bis(ligand) containing selenium or sulfur groups (2a and 2b) have been synthesized and characterized by IR spectroscopy, high-resolution mass spectrometry (HRMS), and by X-ray crystallography. In the effort to propose new applications for the biomedical area, we evaluated the antioxidant activity and cytotoxicity of the newly synthesized complexes. The antioxidant activity of the Cu(II) complexes (2a - 2b) were assessed through their ability to inhibit the formation of reactive species (RS) induced by sodium azide and to scavenge the synthetic radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+). Both copper complexes containing selenium (2a) and sulfur (2b) presented in vitro antioxidant activity. The (1a - 1b and 2a - 2b) compounds did not show cytotoxicity in V79 cells at low concentrations. Furthermore, the antiproliferative activity of free ligands (1a - 1b) and their complexes (2a - 2b) were tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and HepG2 (hepatocarcinoma). Also, 2a was tested against U2OS (osteosarcoma). Our results demonstrated that 1a and 1b show little or no growth inhibition activities on human cell lines.The 2a compound exhibited good cytotoxic activity toward human tumor cell lines. However, 2a showed no selectivity, with a selectivity index of 1.12-1.40. Complex 2b was selective for the MCF-7 human tumor cell lines with IC50 of 59 ± 2 µM. This study demonstrates that the Cu(II) complexes 2a and 2b represent promising antitumoral compounds, and further studies are necessary to understand the molecular mechanisms of these effects.


Assuntos
Complexos de Coordenação , Selênio , Humanos , Ligantes , Antioxidantes/farmacologia , Cobre/química , Pirazóis/farmacologia , Enxofre , Complexos de Coordenação/química
10.
Parasitol Res ; 121(9): 2697-2711, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857093

RESUMO

Trichomoniasis is a great public health burden worldwide and the increase in treatment failures has led to a need for finding alternative molecules to treat this disease. In this study, we present in vitro and in silico analyses of two 2,8-bis(trifluoromethyl) quinolines (QDA-1 and QDA-2) against Trichomonas vaginalis. For in vitro trichomonacidal activity, up to seven different concentrations of these drugs were tested. Molecular docking, biochemical, and cytotoxicity analyses were performed to evaluate the selectivity profile. QDA-1 displayed a significant effect, completely reducing trophozoites viability at 160 µM, with an IC50 of 113.8 µM, while QDA-2 at the highest concentration reduced viability by 76.9%. QDA-1 completely inhibited T. vaginalis growth and increased reactive oxygen species production and lipid peroxidation after 24 h of treatment, but nitric oxide accumulation was not observed. In addition, molecular docking studies showed that QDA-1 has a favorable binding mode in the active site of the T. vaginalis enzymes purine nucleoside phosphorylase, lactate dehydrogenase, triosephosphate isomerase, and thioredoxin reductase. Moreover, QDA-1 presented a level of cytotoxicity by reducing 36.7% of Vero cells' viability at 200 µM with a CC50 of 247.4 µM and a modest selectivity index. In summary, the results revealed that QDA-1 had a significant anti-T. vaginalis activity. Although QDA-1 had detectable cytotoxicity, the concentration needed to eliminate T. vaginalis trophozoites is lower than the CC50 encouraging further studies of this compound as a trichomonacidal agent.


Assuntos
Quinolinas , Tricomoníase , Trichomonas vaginalis , Animais , Chlorocebus aethiops , Humanos , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Tricomoníase/tratamento farmacológico , Trofozoítos , Células Vero
11.
Med Chem ; 18(4): 463-472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341480

RESUMO

BACKGROUND: Developing methods to synthesize highly functionalized and complex 1,2,3- triazoles from various combinations of substrates remains a significant challenge in organic synthesis. Thus, to the best of our knowledge, an organocatalytic approach to synthesize 1,2,3-triazoles derived from fatty acids has not been explored. OBJECTIVE: In this sense, we describe here the organocatalyzed synthesis and preliminary results of antitumor and cytotoxic activity of a range of 1,2,3-triazoles derived from fatty esters. METHODS: To synthesize 1,2,3-triazoles 3 derived from fatty ß-ketoesters, we performed the reaction of appropriate aryl azides 2a-j with ß -ketoesters 1a-c in the presence of 5 mol% of DBU using DMSO as a solvent at 70 °C for 24 h. The viability of 5637 cells was determined by measuring the reduction of soluble MTT to water-insoluble formazan. The IC50 concentration that inhibits 50% of cell growth and the results were obtained by at least three independent experiments in triplicate for each test. RESULTS: Through enolate-mediated organocatalysis, 1,2,3-triazoles 3 derived from fatty ß-ketoesters were synthesized in moderate to excellent yields by reacting fatty esters 1 with aryl azides 2 in the presence of a catalytic amount of 1,8-diazabicyclo[5.4.0]undec-7-ene (5 mol%). All compounds derived from palmitic acetoacetate 1a were evaluated regarding induced cytotoxicity in vitro in a human bladder cancer cell line, and compounds 3a, 3d, 3e, and 3g were shown to be promising alternatives for bladder cancer treatment and presented the lowest inhibitory concentration of IC50. CONCLUSION: We described a synthetic procedure to prepare 1,2,3-triazoles derived from fatty ß - ketoesters by DBU-catalyzed 1,3-dipolar cycloaddition reactions of fatty esters with different aryl azides. Compounds derived from palmitic acetoacetate were screened for antitumor and cytotoxic activity in vitro in human bladder cancer cell lines, and compounds 3a, 3d, 3e, and 3g showed potential to treat bladder cancer.


Assuntos
Azidas , Triazóis , Catálise , Técnicas de Química Sintética , Reação de Cicloadição , Humanos , Triazóis/farmacologia
12.
Brain Res ; 1784: 147845, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219720

RESUMO

Essential oils (EO) are plant extracts widely used for various pharmacological applications and their antioxidant and anti-inflammatory effects have received a lot of attention because they hold the potential to reduce oxidative stress, and neuroinflammation, alterations involved in the pathophysiology of major depressive disorder. This study examined the benefits of administration of flower EO of the Tagetes minuta (10 and 50 mg/kg, intragastric route) in attenuating behavioral, neurochemical, and neuroendocrine changes in animal models of depressive-like behavior induced by acute restraint stress and lipopolysaccharide (0.83 mg/kg, intraperitoneally). We demonstrated that the treatment of mice with flower EO of the T. minuta reversed the depressive-like behavior induced by stress or inflammatory challenge in mice. This effect is most likely due to the reversal of oxidative stress in the hippocampus of mice, the decrease in plasma corticosterone levels, and restoration of the mRNA levels of brain-derived neurotrophic factor, phosphatidylinositol-3-kinase, protein kinase B, and extracellular signal-regulated kinase 2. As an outcome, flower EO of the T. minuta has promising antidepressant properties and could be considered for new therapeutic strategies for major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Óleos Voláteis , Tagetes , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Flores/metabolismo , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tagetes/metabolismo
13.
Neurochem Res ; 47(4): 1110-1122, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35165799

RESUMO

1-(7-Chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4- carboxamide (QTC-4-MeOBnE) is a new multi-target directed ligand (MTDL) rationally designed to have affinity with ß-secretase (BACE), Glycogen Synthase Kinase 3ß (GSK3ß) and acetylcholinesterase, which are considered promising targets on the development of disease-modifying therapies against Alzheimer's Disease (AD). Previously, QTC-4-MeOBnE treatment showed beneficial effects in preclinical AD-like models by influencing in vivo neurogenesis, oxidative and inflammatory pathways. However, the biological effect and mechanism of action exerted by QTC-4-MeOBnE in AD cellular models have not been elucidated yet. Hereby we investigate the acute effect of QTC-4-MeOBnE on neuronal cells overexpressing Amyloid Protein Precursor (APP) or human tau protein, the two main features of the AD pathophysiology. When compared to the control group, QTC-4-MeOBnE treatment prevented amyloid beta (Aß) formation through the downregulation of APP and BACE levels in APPswe-expressing cells. Furthermore, in N2a cells overexpressing human tau, QTC-4-MeOBnE reduced the levels of phosphorylated forms of tau via the modulation of the GSK3ß pathway. Taken together, our findings provide new insights into the mechanism of action exerted by QTC-4-MeOBnE in AD cellular models, and further support its potential as an interesting therapeutic strategy against AD.


Assuntos
Doença de Alzheimer , Proteínas tau , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosforilação , Quinolinas , Triazóis/uso terapêutico , Proteínas tau/metabolismo
14.
Brain Behav Immun ; 99: 177-191, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624485

RESUMO

Clinical and preclinical investigations have suggested a possible biological link betweenmajor depressive disorder (MDD) and Alzheimer's disease (AD). Therefore, a pharmacologic approach to treating MDD could be envisioned as a preventative therapy for some AD cases. In line with this, 1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4 carboxamide (QTC-4-MeOBnE) is characterized as an inhibitor of ß-secretase, glycogen synthase kinase 3ß, and acetylcholinesterase and has also shown secondary effects underlying the modulation of neurogenesis and synaptic plasticity pathways. Therefore, we investigated the effects of QTC-4-MeOBnE treatment (0.1 or 1 mg/kg) on depressive-like behavior and cognitive impairments elicited by repeated injections of lipopolysaccharide (LPS; 250 µg/kg) in mice. Injections of LPS for seven days led to memory impairments and depressive-like behavior, as evidenced in the Y-maze/object recognition test and forced swimming/splash tests, respectively. However, these impairments were prevented in mice that, after the last LPS injection, were also treated with QTC-4-MeOBnE (1 mg/kg). This effect was associated with restoring blood-brain barrier permeability, reducing oxidative/nitrosative biomarkers, and decreasing neuroinflammation mediated NF-κB signaling in the hippocampus and cortex of the mice. To further investigate the involvement with NF-κB signaling, we evaluated the effects of QTC-4-MeOBnE on microglial cell activation through canonical and non-canonical pathways and the modulation of the involved components. Together, our findings highlight the pharmacological benefits of QTC-4-MeOBnE in a mouse model of sickness behavior and memory impairments, supporting the novel concept that since this molecule produces anti-depressant activity, it could also be beneficial for preventing AD onset and related dementias in subjects suffering from MDD through inflammatory pathway modulation.


Assuntos
Disfunção Cognitiva , Lipopolissacarídeos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Depressão/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Permeabilidade , Quinolinas , Triazóis
15.
Eur J Pharmacol ; 914: 174570, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34653379

RESUMO

The 3-[(4-methoxyphenyl)selanyl]-2-phenylimidazo[1,2-a] pyridine (MPI), a novel organic selenium compound, has been receiving increased attention due to its antioxidant effects and its ability to protect against depression-like behaviours. However, it remains elusive whether MPI is able to reverse depressive-like symptoms and biochemical alterations in mice. In the present work, we explored the ability of MPI (10 mg/kg, i.g.) to reverse inflammation- and stress-induced depression-like behaviours in mice injected with tumour necrosis factor (TNF-α) or submitted to acute restraint stress. Depression-like behaviours were evaluated by the tail suspension and splash test and the open field test was used to evaluate the locomotor activity of mice. The prefrontal cortex and hippocampus of mice were used for the evaluation of parameters of oxidonitrosative stress. Here, we showed that a single administration of MPI abolished the depressive-like behaviours induced by TNF-α and acute restraint stress. The oxidative and nitrosative stress presented in mice with depression-like behaviours were also decreased by MPI in the prefrontal cortex and hippocampus. Our findings suggest that MPI presents antidepressant-like activity which is associated with the biochemical regulation of oxidative stress in prefrontal cortex and hippocampus of mice, arising as a promising strategy for the management of depressive symptoms.


Assuntos
Depressão , Hipocampo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Compostos de Selênio/farmacologia , Estresse Psicológico , Animais , Antidepressivos/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Inflamação/metabolismo , Camundongos , Restrição Física , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo
16.
Chem Biol Interact ; 351: 109736, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740600

RESUMO

The aim of the present study was investigate the binding affinity of 5-((4-methoxyphenyl)thio)benzo[c][1,2,5]thiadiazole (MTDZ) with acetylcholinesterase (AChE). We also evaluated the effect of MTDZ against scopolamine (SCO)-induced amnesia in mice and we looked at the toxicological potential of this compound in mice. The binding affinity of MTDZ with AChE was investigated by molecular docking analyses. For an experimental model, male Swiss mice were treated daily with MTDZ (10 mg/kg, intragastrically (i.g.)) or canola oil (10 ml/kg, i.g.), and induced, 30 min later, with injection of SCO (0.4 mg/kg, intraperitoneally (i.p.)) or saline (0.9%, 5 ml/kg, i.p.) daily. From day 1 to day 10, mice were submitted to the behavioral tasks (Barnes maze, open-field, object recognition and location, Y-maze and step-down inhibitory avoidance tasks), 30 min after induction with SCO. On the tenth day, the animals were euthanized and blood was collected for the analysis of biochemical markers (creatinine, aspartate (AST), and alanine (ALT) aminotransferase). MTDZ interacts with residues of the AChE active site. SCO caused amnesia in mice by changing behavioral tasks. MTDZ treatment attenuated the behavioral changes caused by SCO. In ex vivo assay, MTDZ also protected against the alteration of AChE activity, reactive species (RS) levels, thiobarbituric acid reative species (TBARS) levels, catalase (CAT) activity in tissues, as well as in transaminase activities of plasma caused by SCO in mice. In conclusion, MTDZ presented anti-amnesic action through modulation of the cholinergic system and provided protection from kidney and liver damage caused by SCO.


Assuntos
Acetilcolinesterase/metabolismo , Amnésia/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Nootrópicos/uso terapêutico , Sulfetos/uso terapêutico , Tiadiazóis/uso terapêutico , Amnésia/induzido quimicamente , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Inibidores da Colinesterase/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Nootrópicos/metabolismo , Ligação Proteica , Escopolamina , Sulfetos/metabolismo , Tiadiazóis/metabolismo
17.
J Org Chem ; 86(24): 17866-17883, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34843245

RESUMO

A range of bis-triazolylchalcogenium-BTD 3 was synthesized by a copper-catalyzed azide-alkyne cycloaddition of azido arylchalcogenides 1 and 4,7-diethynylbenzo[c][1,2,5]thiadiazole 2. Eight new compounds were obtained in moderate to good yields using 1 mol % of copper(II) acetate monohydrate under mild reaction conditions. In addition, the synthesized bis-triazolylchalcogenium-BTD 3a-3h were investigated regarding their photophysical, electrochemical, and biomolecule binding properties in solution. In general, compounds presented strong absorption bands at the 250-450 nm region and cyan to green emission properties. The redox process attributed to the chalcogen atom was observed by electrochemical analysis (CV techniques). In addition, spectroscopic studies by UV-vis, steady-state emission fluorescence, and molecular docking calculations evidenced the ability of each derivative to establish interactions with calf-thymus DNA (CT-DNA) and bovine serum albumin (BSA). The behavior presented for this new class of compounds makes them a promising tool as optical sensors for biomolecules.


Assuntos
Soroalbumina Bovina , Tiadiazóis , DNA , Simulação de Acoplamento Molecular
18.
J Psychiatr Res ; 144: 225-233, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34700210

RESUMO

Hypothyroidism is a condition that affects multiple systems, including the central nervous system, causing, for example, cognitive deficits closely related to Alzheimer's disease. The flavonoid chrysin is a natural compound associated with neuronal improvement in several experimental models. Here, we evaluated the effect of chrysin on cognitive impairment in hypothyroid female mice by exploring neuroplasticity. Hypothyroidism was induced by continuous exposure to 0.1% methimazole (MTZ) in drinking water for 31 days. On the 32nd day, the animals showed low plasma levels of thyroid hormones (hypothyroid mice) than the control group (euthyroid mice). Subsequently, mice were intragastrically administered with vehicle or chrysin (20 mg/kg) once a day for 28 consecutive days. At the end of the treatments, behavioral tests were performed: open-field test (OFT) and morris water maze (MWM). Then, the levels of neurotrophins (BDNF and NGF) in the hippocampus and prefrontal cortex were measured and tested the affinity of chrysin with neurotrophinergic receptors through molecular docking. Hypothyroid mice showed memory deficit in the MWM and reduced neurotrophins levels in the hippocampus and prefrontal cortex, meanwhile, the chrysin treatment was able to reversed the deficit of spatial memory function and increased the levels of BDNF in hipocamppus and NGF in both structures. Additionally, molecular docking analysis showed that chrysin potentially binds to the active site of the TrkA, TrkB, and p75NTR receptors. Together, these findings suggest that chrysin reversed behavioral and neurochemical alterations associated with memory deficit induced by hypothyroidism, possibly by modulating synaptic plasticity in the neurotrophinergic system.


Assuntos
Hipotireoidismo , Transtornos da Memória , Animais , Feminino , Flavonoides/metabolismo , Hipocampo , Hipotireoidismo/complicações , Hipotireoidismo/tratamento farmacológico , Aprendizagem em Labirinto , Transtornos da Memória/complicações , Transtornos da Memória/etiologia , Camundongos , Simulação de Acoplamento Molecular
19.
Eur J Pharmacol ; 910: 174499, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34508753

RESUMO

Octylseleno-xylofuranoside (OSX) is an organic selenium compound which has previously shown antioxidant and antidepressant-like activities, trough the modulation of monoaminergic system and synaptic plasticity pathways. Since recent studies have suggested Major Depressive Disorder (MDD) as a potential risk factor or condition that precedes and correlates with Alzheimer's Disease (AD), this study aimed to evaluate the protective effects of OSX in an AD mouse model induced by intracerebroventricular injection of streptozotocin (STZ). To address this protective effect, mice were pre-treated with intragastrical OSX (0.1 mg/kg) or vehicle for 20 days. After the pre-treatment, mice were submitted to two alternated intracerebroventricular infusions of STZ (days 21 and 23) or saline. 15 days after the last STZ injection, cognitive and memory skills of the treated mice were evaluated on object recognition test, Y-maze, stepdown passive avoidance and social recognition paradigms. Added to that, measurements of oxidative stress markers and gene expression were evaluated in brain samples of the same mice groups. Mice pre-treatment with OSX protected mice from cognitive and memory decline elicited by STZ. This effect was attributed to the prevention of lipid peroxidation and modulation of acetylcholinesterase and monoamine oxidase activities in cerebral cortices and hippocampi by OSX treatment. Furthermore, OSX treatment demonstrated reduction of amyloidogenic pathway genes expression when compared to the control groups. Besides that, OSX treatment showed no hepatic and renal toxicity in the protocol used for treatment. Considering the antidepressant-like effect of OSX, together with the ability to prevent memory and cognitive impairment, this new compound may be an interesting strategy for targeting the comorbidity between MDD and AD, in a multitarget drug paradigm.


Assuntos
Doença de Alzheimer/prevenção & controle , Glicosídeos/farmacologia , Compostos Organosselênicos/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Glicosídeos/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Infusões Intraventriculares , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Compostos Organosselênicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
20.
Pharmacol Res ; 171: 105740, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246781

RESUMO

Many studies have suggested that imbalance of the gut microbial composition leads to an increase in pro-inflammatory cytokines and promotes oxidative stress, and this are directly associated with neuropsychiatric disorders, including major depressive disorder (MDD). Clinical data indicated that the probiotics have positive impacts on the central nervous system and thus may have a key role to treatment of MDD. This study examined the benefits of administration of Komagataella pastoris KM71H (8 log UFC·g-1/animal, intragastric route) in attenuating behavioral, neurochemical, and neuroendocrine changes in animal models of depressive-like behavior induced by repeated restraint stress and lipopolysaccharide (0.83 mg/kg). We demonstrated that pretreatment of mice with this yeast prevented depression-like behavior induced by stress and an inflammatory challenge in mice. We believe that this effect is due to modulation of the permeability of the blood-brain barrier, restoration in the mRNA levels of the Nuclear factor kappa B, Interleukin 1ß, Interferon γ, and Indoleamine 2 3-dioxygenase, and prevention of oxidative stress in the prefrontal cortices, hippocampi, and intestine of mice and of the decrease the plasma corticosterone levels. Thus, we conclude that K. pastoris KM71H has properties for a new proposal of probiotic with antidepressant-like effect, arising as a promising therapeutic strategy for MDD.


Assuntos
Antidepressivos/uso terapêutico , Depressão/terapia , Transtorno Depressivo Maior/terapia , Probióticos/uso terapêutico , Saccharomycetales , Estresse Psicológico/terapia , Animais , Antidepressivos/farmacologia , Comportamento Animal , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Corticosterona/sangue , Depressão/metabolismo , Depressão/patologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Expressão Gênica , Intestino Delgado/anatomia & histologia , Intestino Delgado/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Estresse Oxidativo , Probióticos/farmacologia , Baço/patologia , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA