RESUMO
Human osteosarcoma (OS) is a relatively rare malignancy preferentially affecting long body bones which prognosis is often poor also due to the lack of effective therapies. Clinical management of this cancer basically relies on surgical removal of primary tumor coupled with radio/chemotherapy. Unfortunately, most osteosarcoma cells are resistant to conventional therapy, with the undergoing epithelial-mesenchymal transition (EMT) giving rise to gene expression reprogramming, thus increasing cancer cell invasiveness and metastatic potential. Alternative clinical approaches are thus urgently needed. In this context, the recently described ferroptotic cell death represents an attractive new strategy to efficiently kill cancer cells, since most chemoresistant and mesenchymal-shaped tumors display high susceptibility to pro-ferroptotic compounds. However, cancer cells have also evolved anti-ferroptotic strategies, which somehow sustain their survival upon ferroptosis induction. Indeed, here we show that osteosarcoma cell lines display heterogeneous sensitivity to ferroptosis execution, correlating with the mesenchymal phenotype, which is consistently affected by the expression of the well-known anti-ferroptotic factor ferroptosis suppressor protein 1 (FSP1). Interestingly, inhibiting the activity or expression of FSP1 restores cancer cell sensitivity to ferroptosis. Moreover, we also found that: i) AKRs might also contribute to resistance; ii) NRF2 enhances FSP1 expression upon ferroptosis induction; while iii) p53 contributes to the regulation of FSP1 basal expression in OS cells.In conclusion, FSP1 expression can potentially be used as a valuable predictive marker of OS sensitivity to ferroptosis and as a new potential therapeutic target.
RESUMO
BACKGROUND: IBD is a spectrum of pathologies characterized by dysregulated immune activation leading to uncontrolled response against the intestine, thus resulting in chronic gut inflammation and tissue damage. Due to its complexity, the molecular mechanisms responsible for disease onset and progression are still elusive, thus requiring intense research effort. In this context, the development of models replicating the etiopathology of IBD and allowing the testing of new potential therapies is critical. METHODS: Colon from C57BL/6 or BALB/c mice was cultivated in a Gut-Ex-Vivo System (GEVS), exposed for 5 h to DNBS 1.5 or 2.5 mg/mL, in presence or absence of two probiotic formulations (P1 = Bifidobacterium breve BR03 (DSM16604) and B632 (DSM24706); P2 = Lacticaseibacillus rhamnosus LR04 (DSM16605), Lactiplantibacillus plantarum LP14 (DSM33401) and Lacticaseibacillus paracasei LPC09), and the main hallmarks of IBD were evaluated. RESULTS: Gene expression analysis revealed the following DNBS-induced effects: (i) compromised tight junction organization, responsible for tissue permeability dysregulation; (ii) induction of ER stress, and (iii) tissue inflammation in colon of C57BL/6 mice. Moreover, the concomitant DNBS-induced apoptosis and ferroptosis pathways were evident in colon from both BALB/c and C57BL/6 mice. Finally, the co-administration of probiotics completely prevented the detrimental effects of DNBS. CONCLUSIONS: Overall, we have provided results demonstrating that GEVS is a consistent, reliable, and cost-effective system for modeling DNBS-induced IBD, useful for studying the onset and progression of human disease at the molecular level, while also reducing animal suffering. Moreover, we have confirmed the beneficial effect of probiotics administration in promoting the remission of IBD.
RESUMO
Inflammatory bowel disease (IBD) is a complex, chronic, and dysregulated inflammatory condition which etiology is still largely unknown. Its prognosis and disease progression are highly variable and unpredictable. IBD comprises several heterogeneous inflammatory conditions ranging from Ulcerative Colitis (UC) to Crohn's Disease (CD). Importantly, a definite, well-established, and effective clinical treatment for these pathologies is still lacking. The urgent need for treatment is further supported by the notion that patients affected by UC or CD are also at risk of developing cancer. Therefore, a deeper understanding of the molecular mechanisms at the basis of IBD development and progression is strictly required to design new and efficient therapeutic regimens. Although the development of animal models has undoubtedly facilitated the study of IBD, such in vivo approaches are often expensive and time-consuming. Here we propose an organ ex vivo culture (Gut-Ex-Vivo system, GEVS) based on colon from Balb/c mice cultivated in a dynamic condition, able to model the biochemical and morphological features of the mouse models exposed to DNBS (5-12 days), in 5 h. Indeed, upon DNBS exposure, we observed a dose-dependent: (i) up-regulation of the stress-related protein transglutaminase 2 (TG2); (ii) increased intestinal permeability associated with deregulated tight junction protein expression; (iii) increased expression of pro-inflammatory cytokines, such as TNFα, IFNγ, IL1ß, IL6, IL17A, and IL15; (iv) down-regulation of the anti-inflammatory IL10; and (v) induction of Endoplasmic Reticulum stress (ER stress), all markers of IBD. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of IBD, in a time- and cost-effective manner.
RESUMO
Arrhythmogenic Cardiomyopathy (ACM) is characterized by the replacement of the myocardium with fibrotic or fibro-fatty tissue and inflammatory infiltrates in the heart. To date, while ACM adipogenesis is a well-investigated differentiation program, ACM-related fibrosis remains a scientific gap of knowledge. In this study, we analyze the fibrotic process occurring during ACM pathogenesis focusing on the role of cardiac mesenchymal stromal cells (C-MSC) as a source of myofibroblasts. We performed the ex vivo studies on plasma and right ventricular endomyocardial bioptic samples collected from ACM patients and healthy control donors (HC). In vitro studies were performed on C-MSC isolated from endomyocardial biopsies of both groups. Our results revealed that circulating TGF-ß1 levels are significantly higher in the ACM cohort than in HC. Accordingly, fibrotic markers are increased in ACM patient-derived cardiac biopsies compared to HC ones. This difference is not evident in isolated C-MSC. Nevertheless, ACM C-MSC are more responsive than HC ones to TGF-ß1 treatment, in terms of pro-fibrotic differentiation and higher activation of the SMAD2/3 signaling pathway. These results provide the novel evidence that C-MSC are a source of myofibroblasts and participate in ACM fibrotic remodeling, being highly responsive to ACM-characteristic excess TGF-ß1.
Assuntos
Displasia Arritmogênica Ventricular Direita/fisiopatologia , Endocárdio/patologia , Células-Tronco Mesenquimais/patologia , Miofibroblastos/patologia , Fator de Crescimento Transformador beta1/fisiologia , Adulto , Displasia Arritmogênica Ventricular Direita/sangue , Displasia Arritmogênica Ventricular Direita/patologia , Diferenciação Celular , Endocárdio/metabolismo , Feminino , Fibrose , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , Transdução de Sinais/fisiologia , Proteína Smad2/fisiologia , Proteína Smad3/fisiologia , Fator de Crescimento Transformador beta1/sangueRESUMO
Exposure to gluten, a protein present in wheat rye and barley, is the major inducer for human Celiac Disease (CD), a chronic autoimmune enteropathy. CD occurs in about 1% worldwide population, in genetically predisposed individuals bearing human leukocyte antigen (HLA) DQ2/DQ8. Gut epithelial cell stress and the innate immune activation are responsible for the breaking oral tolerance to gliadin, a gluten component. To date, the only treatment available for CD is a long-term gluten-free diet. Several studies have shown that an altered composition of the intestinal microbiota (dysbiosis) could play a key role in the pathogenesis of CD through the modulation of intestinal permeability and the regulation of the immune system. Here, we show that gliadin induces a chronic endoplasmic reticulum (ER) stress condition in the small intestine of a gluten-sensitive mouse model and that the coadministration of probiotics efficiently attenuates both the unfolded protein response (UPR) and gut inflammation. Moreover, the composition of probiotics formulations might differ in their activity at molecular level, especially toward the three axes of the UPR. Therefore, probiotics administration might potentially represent a new valuable strategy to treat gluten-sensitive patients, such as those affected by CD.
Assuntos
Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Intolerância Alimentar/terapia , Trato Gastrointestinal/patologia , Gliadina/efeitos adversos , Glutens/efeitos adversos , Inflamação/patologia , Probióticos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células CACO-2 , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Permeabilidade , Probióticos/administração & dosagem , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/metabolismo , Regulação para CimaRESUMO
Celiac disease (CD) is a complex immune-mediated chronic disease characterized by a consistent inflammation of the gastrointestinal tract induced by gluten intake in genetically predisposed individuals. Although initiated by the interaction between digestion-derived gliadin, a gluten component, peptides, and the intestinal epithelium, the disorder is highly complex and involving other components of the intestine, such as the immune system. Therefore, conventional model systems, mainly based on two- or three-dimension cell cultures and co-cultures, cannot fully recapitulate such a complex disease. The development of mouse models has facilitated the study of different interacting cell types involved in the disorder, together with the impact of environmental factors. However, such in vivo models are often expensive and time consuming. Here we propose an organ ex vivo culture (gut-ex-vivo system) based on small intestines from gluten-sensitive mice cultivated in a dynamic condition, able to fully recapitulate the biochemical and morphological features of the mouse model exposed to gliadin (4 weeks), in 16 h. Indeed, upon gliadin exposure, we observed: i) a down-regulation of cystic fibrosis transmembrane regulator (CFTR) and an up-regulation of transglutaminase 2 (TG2) at both mRNA and protein levels; ii) increased intestinal permeability associated with deregulated tight junction protein expression; iii) induction and production of pro-inflammatory cytokines such as interleukin (IL)-15, IL-17 and interferon gamma (IFNγ); and iv) consistent alteration of intestinal epithelium/villi morphology. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of CD, test new or repurposed molecules to accelerate the search for new treatments, and to study the impact of the microbiome and derived metabolites, in a time- and cost- effective manner.
RESUMO
Human skin melanoma is one of the most aggressive and difficult to treat human malignancies, with an increasing incidence over the years. While the resection of the early diagnosed primary tumor remains the best clinical approach, advanced/metastatic melanoma still remains with a poor prognosis. Indeed, although enormous progress in the therapeutic treatment of human tumors has been made in recent years, patients affected by metastatic melanoma are still poorly affected by these clinical advances. Therefore, new valuable therapeutic approaches are urgently needed, to design and define effective treatments to consistently increase the overall survival rate of patients affected by this malignancy. In this review we summarize the main signaling pathways studied to kill human skin melanoma, and introduce the ferroptotic cell death as a new pathway to be explored to eradicate this tumor.
Assuntos
Ferroptose , Melanoma/secundário , Neoplasias Cutâneas/patologia , Animais , Antineoplásicos/uso terapêutico , Ferroptose/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Terapia de Alvo Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismoRESUMO
A normal adult heart is composed of several different cell types, among which cardiac mesenchymal stromal cells represent an abundant population. The isolation of these cells offers the possibility of studying their involvement in cardiac diseases, and, in addition, provides a useful primary cell model to investigate biological mechanisms. Here, the method for the isolation of C-MSC from arrhythmogenic cardiomyopathy patients' bioptic samples is described. The endomyocardial biopsy sampling is guided in the right ventricular areas adjacent to the scar visualized by electro-anatomical mapping. The digestion of the biopsies in collagenase and their plating on a plastic dish in culture medium to allow C-MSC growth is described. The isolated cells can be expanded in culture for several passages. To confirm their mesenchymal phenotype, the description of immuno-phenotypical characterization is provided. C-MSC are able to differentiate into several cell types like adipocytes, chondrocytes, and osteoblasts: in the context of ACM, characterized by adipocyte deposits in patients' hearts, the protocols for the adipogenic differentiation of C-MSC and the characterization of lipid droplet accumulation are described.