Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699818

RESUMO

Little is known regarding the precise muscle, bone and joint actions resulting from individual and simultaneous muscle activation(s) of the lower limb. An in situ experimental approach is described herein to control the muscles of the rabbit lower hindlimb, including the medial and lateral gastrocnemius, soleus, plantaris and tibialis anterior. The muscles were stimulated using nerve-cuff electrodes placed around the innervating nerves of each muscle. Animals were fixed in a stereotactic frame with the ankle angle set at 90 deg. To demonstrate the efficacy of the experimental technique, isometric plantarflexion torque was measured at the 90 deg ankle joint angle at a stimulation frequency of 100, 60 and 30 Hz. Individual muscle torque and the torque produced during simultaneous activation of all plantarflexor muscles are presented for four animals. These results demonstrate that the experimental approach was reliable, with insignificant variation in torque between repeated contractions. The experimental approach described herein provides the potential for measuring a diverse array of muscle properties, which is important to improve our understanding of musculoskeletal biomechanics.


Assuntos
Membro Posterior , Músculo Esquelético , Torque , Animais , Coelhos , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação , Membro Posterior/fisiologia , Fenômenos Biomecânicos , Estimulação Elétrica , Masculino
2.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38780905

RESUMO

Skeletal muscles and the tendons that attach them to bone are structurally complex and deform non-uniformly during contraction. While these tissue deformations dictate force production during movement, our understanding of this behaviour is limited due to challenges in obtaining complete measures of the constituent structures. To address these challenges, we present an approach for simultaneously measuring muscle, fascicle, aponeurosis, and tendon behaviour using sonomicrometry. To evaluate this methodology, we conducted isometric and dynamic contractions in in situ rabbit medial gastrocnemius. We found comparable patterns of strain in the muscle belly, fascicle, aponeurosis, and tendon during the isometric trials to those published in the literature. For the dynamic contractions, we found that our measures using this method were consistent across all animals and aligned well with our theoretical understanding of muscle-tendon unit behaviour. Thus, this method provides a means to fully capture the complex behaviour of muscle-tendon units across contraction types.


Assuntos
Aponeurose , Contração Muscular , Músculo Esquelético , Tendões , Tendões/fisiologia , Animais , Coelhos , Aponeurose/fisiologia , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Fenômenos Biomecânicos
3.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676058

RESUMO

In racehorses, the risk of musculoskeletal injury is linked to a decrease in speed and stride length (SL) over consecutive races prior to injury. Surface characteristics influence stride parameters. We hypothesized that large changes in stride parameters are found during galloping in response to dirt racetrack preparation. Harrowing of the back stretch of a half-mile dirt racetrack was altered in three individual lanes with decreasing depth from the inside to the outside. Track underlay compaction and water content were changed between days. Twelve horses (six on day 2) were sequentially galloped at a target speed of 16 ms-1 across the three lanes. Speed, stride frequency (SF), and SL were quantified with a GPS/GNSS logger. Mixed linear models with speed as covariate analyzed SF and SL, with track hardness and moisture content as fixed factors (p < 0.05). At the average speed of 16.48 ms-1, hardness (both p < 0.001) and moisture content (both p < 0.001) had significant effects on SF and SL. The largest difference in SL of 0.186 m between hardness and moisture conditions exceeded the 0.10 m longitudinal decrease over consecutive race starts previously identified as injury predictor. This suggests that detailed measurements of track conditions might be useful for refining injury prediction models.


Assuntos
Marcha , Animais , Cavalos/fisiologia , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Corrida/fisiologia
4.
J Biomech ; 152: 111578, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37068416

RESUMO

A bobsled race can be won or lost at the start, and the contribution of the athletes during the start phase is crucial. Nevertheless, the details of that contribution are not well understood, and we believe that, to improve team performance, it is necessary to determine the contributions of the individual athletes to the bobsled's speed throughout the start phase. The goal of this project was to develop the instrumentation for a 4-man bobsled that allows for measuring the propulsive forces of each athlete during the bobsled push start. We describe the final set-up and discuss potential applications. The instrumented bobsled can be used to provide novel and important information about individual athlete and team performance during the start phase of bobsledding.


Assuntos
Atletas , Desempenho Atlético , Humanos
5.
J Biomech ; 147: 111430, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640614

RESUMO

Experimental observations and theoretical models suggest that the loading of muscular aponeuroses is complex, causing strain patterns that are not reconcilable with the frequently assumed mechanical "in series" arrangement of aponeuroses with muscles and tendons. The purpose of this work was to measure the in-vivo longitudinal strains of the distal and proximal aponeuroses and force of the unipennate Medial Gastrocnemius (MG) muscle during locomotor activities. Sonomicrometry crystals and a force buckle transducer were implanted to measure aponeurosis strains and MG forces in the left hindlimb of four healthy female sheep while walking at different speeds and inclination angles on a motorized treadmill. The resulting aponeurosis strains versus the corresponding muscle forces resulted in a complex interaction that is not reconcilable with a mechanical "in series" arrangement of aponeuroses with either the free tendon or muscle, as has frequently been assumed when trying to determine the storage and release of mechanical energy in muscles or the stiffness and elastic modulus of in-vivo aponeurosis tissues. We conclude that the interaction of muscle tissue with aponeuroses in the sheep MG allows for elongation of the aponeuroses at low forces in the passive muscle, while elongation in the active muscle is greatly reduced possibly due to the complex shear forces and pressures produced when the muscle is activated. It is likely that the observed aponeurosis mechanics are similar in other unipennate skeletal muscles, but the current study was limited to a single muscle and therefore does not allow for such extrapolation at this time.


Assuntos
Aponeurose , Músculo Esquelético , Feminino , Animais , Ovinos , Aponeurose/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Módulo de Elasticidade , Modelos Biológicos
6.
J Bone Miner Res ; 38(3): 403-413, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36533719

RESUMO

Prolonged use of antiresorptives such as the bisphosphonate alendronate (ALN) and the RANKL inhibitor denosumab (DMAb) are associated with rare cases of atypical femoral fracture (AFF). The etiology of AFF is unclear, but it has been hypothesized that potent osteoclast inhibitors may reduce bone fatigue resistance. The purpose of this study was to quantify the relationship between antiresorptive treatment and fatigue life (cycles to failure) in bone from ovariectomized cynomolgus monkeys. We analyzed humeral bone from 30 animals across five treatment groups. Animals were treated for 12 months with subcutaneous (sc) vehicle (VEH), sc DMAb (25 mg/kg/month), or intravenous (iv) ALN (50 µg/kg/month). Another group received 6 months VEH followed by 6 months DMAb (VEH-DMAb), and the final group received 6 months ALN followed by 6 months DMAb (ALN-DMAb). A total of 240 cortical beam samples were cyclically tested in four-point bending at 80, 100, 120, or 140 MPa peak stress. High-resolution imaging and density measurements were performed to evaluate bone microstructure and composition. Samples from the ALN (p = 0.014), ALN-DMAb (p = 0.008), and DMAb (p < 0.001) groups illustrated higher fatigue-life measurements than VEH. For example, at 140 MPa the VEH group demonstrated a median ± interquartile range (IQR) fatigue life of 1987 ± 10593 cycles, while animals in the ALN, ALN-DMAb, and DMAb groups survived 9850 ± 13648 (+395% versus VEH), 10493 ± 16796 (+428%), and 14495 ± 49299 (+629%) cycles, respectively. All antiresorptive treatment groups demonstrated lower porosity, smaller pore size, greater pore spacing, and lower number of canals versus VEH (p < 0.001). Antiresorptive treatment was also associated with greater apparent density, dry density, and ash density (p ≤ 0.03). We did not detect detrimental changes following antiresorptive treatments that would explain their association with AFF. In contrast, 12 months of treatment may have a protective effect against fatigue fractures. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Conservadores da Densidade Óssea , Doenças Ósseas , Animais , Alendronato/farmacologia , Denosumab/farmacologia , Macaca fascicularis , Densidade Óssea , Osso e Ossos , Conservadores da Densidade Óssea/farmacologia
7.
J Man Manip Ther ; 31(4): 261-269, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36382347

RESUMO

BACKGROUND: The vertebral artery (VA) may be stretched and subsequently damaged during manual cervical spine manipulation. The objective of this study was to measure VA length changes that occur during cervical spine manipulation and to compare these to the VA failure length. METHODS: Piezoelectric ultrasound crystals were implanted along the length of the VA (C1 to C7) and were used to measure length changes during cervical spine manipulation of seven un-embalmed, post-rigor human cadavers. Arteries were then excised, and elongation from arbitrary in-situ head/neck positions to first force (0.1 N) was measured. Following this, VA were stretched (8.33 mm/s) to mechanical failure. Failure was defined as the instance when VA elongation resulted in a decrease in force. RESULTS: From arbitrary in-situ head/neck positions, the greatest average VA length change during spinal manipulation was [mean (range)] 5.1% (1.1 to 15.1%). From arbitrary in-situ head/neck positions, arteries were elongated on average 33.5% (4.6 to 84.6%) prior to first force occurrence and 51.3% (16.3 to 105.1%) to failure. Average failure forces were 3.4 N (1.4 to 9.7 N). CONCLUSIONS: Measured in arbitrary in-situ head/neck positions, VA were slack. It appears that this slack must be taken up prior to VA experiencing tensile force. During cervical spine manipulations (using cervical spine extension and rotation), arterial length changes remained below that slack length, suggesting that VA elongated but were not stretched during the manipulation. However, in order to answer the question if cervical spine manipulation is safe from a mechanical perspective, the testing performed here needs to be repeated using a defined in-situ head/neck position and take into consideration other structures (e.g. carotid arteries).


Assuntos
Manipulação da Coluna , Artéria Vertebral , Humanos , Manipulação da Coluna/métodos , Pescoço , Vértebras Cervicais , Cadáver
8.
Bone ; 164: 116517, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35961611

RESUMO

Upper extremity fractures, including those at the humerus, are common among women with postmenopausal osteoporosis. Denosumab was shown to reduce humeral fractures in this population; however, no clinical or preclinical studies have quantified the effects of denosumab on humerus bone mineral density or bone microarchitecture changes. This study used micro-computed tomography (µCT) and computed tomography (CT), alongside image-based finite element (FE) models derived from both modalities, to quantify the effects of denosomab (DMAb) and alendronate (ALN) on humeral bone from acutely ovariectomized (OVX) cynomolgus monkeys. Animals were treated with 12 monthly injections of s.c. vehicle (VEH; n = 10), s.c. denosumab (DMAb; 25 mg/kg, n = 9), or i.v. alendronate (ALN; 50 µg/kg, n = 10). Two more groups received 6 months of VEH followed by 6 months of DMAb (VEH-DMAb; n = 7) or 6 months of ALN followed by 6 months of DMAb (ALN-DMAb; n = 9). After treatment, humeri were harvested and µCT was used to quantify tissue mineral density, trabecular morphology, and cortical porosity at the humeral head. Clinical CT imaging was also used to quantify trabecular and cortical bone mineral density (BMD) at the ultra-proximal, proximal, 1/5 proximal and midshaft of the bone. Finally, µCT-based FE models in compression, and CT-based FE models in compression, torsion, and bending, were developed to estimate differences in strength. Compared to VEH, groups that received DMAb at any time demonstrated lower cortical porosity and/or higher tissue mineral density via µCT; no effects on trabecular morphology were observed. FE estimated strength based on µCT was higher after 12-months DMAb (p = 0.020) and ALN-DMAb (p = 0.024) vs. VEH; respectively, FE predicted mean (SD) strength was 4649.88 (710.58) N, and 4621.10 (1050.16) N vs. 3309.4 (876.09) N. All antiresorptive treatments were associated with higher cortical BMD via CT at the 1/5 proximal and midshaft of the humerus; however, no differences in CT-based FE predicted strength were observed. Overall, these results help to explain the observed reductions in humeral fracture rate following DMAb treatment in women with postmenopausal osteoporosis.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Alendronato/farmacologia , Alendronato/uso terapêutico , Animais , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Denosumab/farmacologia , Denosumab/uso terapêutico , Epífises , Feminino , Humanos , Úmero/diagnóstico por imagem , Macaca fascicularis , Osteoporose Pós-Menopausa/tratamento farmacológico , Ovariectomia , Porosidade , Microtomografia por Raio-X
9.
J Appl Biomech ; 38(4): 237-245, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894982

RESUMO

The purpose of this study was to quantify the contribution of the individual quadriceps muscles to patellar tracking. The individual and/or combined quadriceps muscles were activated in rabbits (n = 6) during computer-controlled flexion/extension of the knee. Three-dimensional patellar tracking was measured for the vastus lateralis, vastus medialis, and rectus femoris when activated alone and when activated simultaneously at different frequencies, producing a range of knee extensor torques. Patellar tracking changed substantially as a function of knee extensor torque and differed between muscles. Specifically, when all quadriceps muscles were activated simultaneously, the patella shifted more medially and proximally and rotated and tilted more medially compared with when vastus lateralis and rectus femoris were activated alone (P < .05), whereas vastus medialis activation alone produced a similar tracking pattern to that observed when all quadriceps muscles were activated simultaneously. Furthermore, patellar tracking for a given muscle condition shifted more medially and proximally and rotated and tilted more medially with increasing knee extensor torques across the entire range of knee joint angles. The authors conclude that patellar tracking depends crucially on knee extensor force/torque and that vastus medialis affects patellar tracking in a distinctly different way than vastus lateralis and rectus femoris, which produce similar tracking patterns.


Assuntos
Patela , Músculo Quadríceps , Animais , Fenômenos Biomecânicos , Eletromiografia , Humanos , Joelho , Articulação do Joelho/fisiologia , Patela/fisiologia , Músculo Quadríceps/fisiologia , Coelhos
10.
J Biomech ; 129: 110798, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34700144

RESUMO

The purpose of this study was to investigate the alterations with obesity, and the effects of moderate aerobic exercise or prebiotic dietary-fibre supplementation on the mechanical and biochemical properties of the tail tendon in a rat model of high-fat/high-sucrose (HFS) diet-induced obesity. Thirty-two male Sprague-Dawley rats were randomized to chow (n = 8) or HFS (n = 24) diets. After 12-weeks, the HFS fed rats were further randomized into sedentary (HFS sedentary, n = 8), exercise (HFS + E, n = 8) or prebiotic fibre supplementation (HFS + F, n = 8) groups. After another 12-weeks, rats were sacrificed, and one tail tendon was isolated and tested. Stress-relaxation and stretch-to-failure tests were performed to determine mechanical properties (peak, steady-state, yield and failure stresses, Young's modulus, and yield and failure strains) of the tendons. The hydroxyproline content was also analyzed. The HFS sedentary and HFS + F groups had higher final body masses and fat percentages compared to the chow and HFS + E groups. Yield strain was reduced in the HFS sedentary rats compared to the chow rats. Peak and steady-state stresses, failure strain, Young's modulus, and hydroxyproline content were not different across groups. Although the HFS + E group showed higher failure stress, yield stress, and yield strain compared to the HFS sedentary group, HFS + F animals did not produce differences in the properties of the tail tendon compared to the HFS sedentary group. These results indicate that exposure to a HFS diet led to a reduction in the yield strain of the tail tendon and aerobic exercise, but not fibre supplementation, attenuated these diet-related alterations to tendon integrity.


Assuntos
Prebióticos , Cauda , Animais , Dieta , Dieta Hiperlipídica/efeitos adversos , Masculino , Obesidade/etiologia , Ratos , Ratos Sprague-Dawley , Tendões
11.
J Rehabil Med ; 53(9): jrm00229, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34430979

RESUMO

OBJECTIVE: To determine the effects of the leucine metabolite ß-hydroxy-ß-methylbutyrate (HMB) on strength, muscle mass, and contractile material in muscle wasting induced by onabotulinumtoxin type-A (BoNT-A) injection into the quadriceps femoris muscles of New Zealand white rabbits. METHODS: A total of 21, female rabbits were divided into 3 groups (n=7, each). Group 1 (Control) received intramuscular injection of saline. Groups 2 and 3 received intramuscular injection of BoNT-A (3.5 units/kg), with group 3 receiving supplementation with HMB (120 mg/kg-BW/day). Muscle morphology, mass, and strength were assessed 8 weeks later in both injected and non-injected contralateral limbs. RESULTS: Injected muscle strength of group 2 (BoNT-A) and group 3 (BoNT-A+HMB) was reduced by 63% and 60%, respectively, compared with Controls (p<0.0001). Strength in contralateral muscles of group 2 was reduced by 23% vs Controls (p<0.002), while in group 3, strength was similar to Controls. Muscle mass in the injected muscles of the BoNT-A and BoNT-A+HMB groups was significantly reduced, by 46% and 48%, respectively. CONCLUSION: While HMB did not prevent loss of muscle strength and mass in the BoNT-A-injected musculature, it prevented significant loss of contractile material in the injected musculature and strength loss in the contralateral non-injected musculature.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Toxinas Botulínicas Tipo A/efeitos adversos , Força Muscular/efeitos dos fármacos , Debilidade Muscular/prevenção & controle , Músculo Esquelético/efeitos dos fármacos , Valeratos/uso terapêutico , Animais , Suplementos Nutricionais , Feminino , Humanos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/patologia , Coelhos , Valeratos/administração & dosagem
12.
J Biomech ; 116: 110216, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460865

RESUMO

Residual force enhancement (rFE) describes the increase in isometric force following muscle stretching compared to the corresponding isometric force. Even though rFE is consistently observed in isolated muscle preparations, it is not always observed in human skeletal muscle. This inconsistency might be associated with disociations between length changes in muscle tendon units (MTUs) and fibres. This prompted the question if there is rFE for conditions where the MTU is stretched while fibres shorten. Rabbit tibialis anterior (TA) MTUs (n = 4) were stretched and the isometric forces following stretching were compared to corresponding forces from isometric reference contractions. Unique combinations of stretch speed and activation were used to create conditions of continuous fibre shortening during MTU stretch. Mean force was increased (18 ± 2%) following MTU stretching compared to the isometric reference forces. Without fibre length measurements, this result would be referred to as rFE. However, fibre shortening in the reference contractions was always greater than for the eccentric stretch contractions, suggesting that the observed increase in force might be caused by less residual force depression (rFD) in the stretch tests compared to the reference contractions. However, the work performed by fibre shortening was similar between the reference and the MTU stretch contractions, suggesting that rFD was similar for both experimental conditions. Therefore, we conclude that we observed rFE in the absence of contractile element stretching. However, a lack of knowledge of the molecular mechanisms that distinguish rFE from rFD prevents an unequivocal pronouncement of what caused the enhanced forces after active muscle stretching.


Assuntos
Depressão , Contração Isométrica , Animais , Fenômenos Mecânicos , Contração Muscular , Músculo Esquelético , Coelhos
13.
J Appl Biomech ; 36(6): 390-396, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32843582

RESUMO

Vastus medialis (VM) weakness is thought to alter patellar tracking, thereby changing the loading of the patellofemoral joint (PFJ), resulting in patellofemoral pain. However, it is challenging to measure VM force and weakness in human studies, nor is it possible to measure the associated mechanical changes in the PFJ. To obtain fundamental insight into VM weakness and its effects on PFJ mechanics, the authors determined PFJ loading in the presence of experimentally simulated VM weakness. Skeletally mature New Zealand White rabbits were used (n = 6), and the vastus lateralis, VM, and rectus femoris were stimulated individually through 3 custom-built nerve cuff electrodes. Muscle torque and PFJ pressure distribution were measured while activating all muscles simultaneously, or when the vastus lateralis and rectus femoris were activated, while VM was not, to simulate a quadriceps muscle strength imbalance. For a given muscular joint torque, peak pressures were greater and joint contact areas were smaller when simulating VM weakness compared with the condition where all muscles were activated simultaneously. The results in the rabbit model support that VM weakness results in altered PFJ loading, which may cause patellofemoral pain, often associated with a strength imbalance of the knee extensor muscle group.

14.
J Exp Biol ; 223(Pt 1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31796603

RESUMO

Agonistic muscles lose approximately 20% of their individual torque-generating capacity when activated with their agonistic muscles compared with when stimulated in isolation. In this study, we (1) tested if this loss in torque was accompanied by a corresponding loss in force, thereby testing the potential role of changes in moment arms between conditions; (2) removed all inter-muscular connections between the quadriceps muscles, thus determining the potential role of inter-muscular force transmission; and (3) systematically changed the inter-muscular pressure by performing experiments at different activation/force levels, thereby exploring the possible role of inter-muscular pressure in the loss of torque capacity with simultaneous muscle activation. Experiments were performed in a New Zealand white rabbit quadriceps model (N=5). Torque and force were measured during activation of femoral nerve branches that supply the individual quadriceps muscles while activating these branches simultaneously and in isolation. Regardless of joint angle and inter-muscular connections between muscles, the differences in torque values between the simultaneous and the isolated activation of the quadriceps muscles were also observed for the directly measured force values. Mean differences in simultaneous and isolated muscle activation remained similar between the intact and separated conditions: torque difference 21±5% of maximum isometric torque of intact condition (MICtorque), versus 19±6% MICtorque, respectively, and force difference 18±3% MICforce versus 19±7% MICforce, respectively. The absolute torque loss was independent of the force, and thus presumably the inter-muscular pressures. Based on these results, we conclude that the torque deficit observed during simultaneous compared with isolated muscle activation is not primarily caused by moment arm, inter-muscular pressure or inter-muscular force transmission. The mechanisms underlying loss of force capacity during agonistic muscle contraction remain unknown.


Assuntos
Músculo Esquelético/fisiologia , Coelhos/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Torque
15.
J Exp Biol ; 222(Pt 14)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31278128

RESUMO

Muscle force during concentric contractions is potentiated by a preceding eccentric contraction: a phenomenon known as the stretch-shortening cycle (SSC) effect. Tendon elongation is often considered to be the primary factor for this force potentiation. However, direct examination of the influence of tendon elongation on the SSC effect has not been made. The aim of this study was to evaluate the contribution of tendon elongation to the SSC effect by comparing the magnitude of the SSC effect in the rat soleus with and without the Achilles tendon. The rat soleus was subjected to concentric contractions without pre-activation (CON) and concentric contractions with an eccentric pre-activation (ECC). For the 'with-tendon' condition, the calcaneus was rigidly fixed to a force transducer, while for the 'without-tendon' condition, the soleus was fixed at the muscle-tendon junction. The SSC effect was calculated as the ratio of the mechanical work done during the concentric phase for the ECC and the CON conditions. Substantial and similar (P=0.167) SSC effects were identified for the with-tendon (318±86%) and the without-tendon conditions (271±70%). The contribution of tendon elongation to the SSC effect was negligible for the rat soleus. Other factors, such as pre-activation and residual force enhancement, may cause the large SSC effects and need to be evaluated.


Assuntos
Tendão do Calcâneo/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Masculino , Ratos , Ratos Sprague-Dawley
16.
J Biomech ; 88: 148-154, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30954249

RESUMO

The worldwide trajectory of increasing obesity rates is a major health problem precipitating a rise in the prevalence of a variety of co-morbidities and chronic diseases. Tendinopathy, in weight and non-weight bearing tendons, in individuals with overweight or obesity has been linked to metabolic dysfunction resulting from obesity. Exercise and dietary fibre supplementation (DFS) are common countermeasures to combat obesity and therefore it seems reasonable to assume that they might protect tendons from structural and mechanical damage in a diet-induced obesity (DIO) model. The purpose of this study was to determine the effects of a DIO, DIO combined with moderate exercise, DIO combined with DFS (prebiotic oligofructose), and DIO combined with moderate exercise and DFS on the mechanical and biochemical properties of the rat tail tendon. Twenty-four male Sprague-Dawley rats, fed a high-fat/high-sucrose diet were randomized into a sedentary, a moderate exercise, a DFS, or a moderate exercise combined with DFS group for 12 weeks. Additionally, six lean age-matched animals were included as a sedentary control group. DIO in combination with exercise alone and with exercise and DFS reduced the Young's Modulus but not the collagen content of the rat tail tendons compared to lean control animals. However, no differences in the mechanical and biochemical properties of the rat tail tendon were detected between the DIO and the lean control group, suggesting that DIO by itself did not impact the tail tendon. It seems that longer DIO exposure periods may be needed to develop overt differences in our DIO model.


Assuntos
Obesidade/fisiopatologia , Condicionamento Físico Animal , Prebióticos , Tendinopatia/fisiopatologia , Tendões/fisiopatologia , Animais , Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley
17.
J Exp Biol ; 222(Pt 6)2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30846537

RESUMO

Many attempts have been made to determine the contribution of individual muscles in an agonistic group to the mechanics of joints. However, previous approaches had the limitations that muscles often could not be controlled in a precise manner, that individual muscles in an agonistic group could not be activated individually, and that individual muscle contributions could not be measured in an actively contracting agonistic group. Here, we introduce a surgical approach that allows for controlled activation of individual muscles of an agonistic group. The approach is illustrated for the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) of the rabbit quadriceps femoris group. We provide exemplar results for potential applications of the approach, such as measuring the pressure distribution in the patellofemoral joint, and the torque-angle relationship of VL, VM and RF when activated individually and when the three muscles are activated simultaneously.


Assuntos
Músculo Quadríceps/fisiologia , Coelhos/fisiologia , Animais , Fenômenos Biomecânicos , Articulação do Joelho , Torque
18.
Lipids Health Dis ; 18(1): 67, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885225

RESUMO

BACKGROUND: The infrapatellar fat pad (IFP) of the knee joint has received lots of attention recently due to its emerging role in the pathogenesis of osteoarthritis (OA), where it displays an inflammatory phenotype. The aim of the present study was to examine the infrapatellar fatty acid (FA) composition in a rabbit (Oryctolagus cuniculus) model of early OA created by anterior cruciate ligament transection (ACLT). METHODS: OA was induced randomly in the left or right knee joint of skeletally mature New Zealand White rabbits by ACLT, while the contralateral knee was left intact. A separate group of unoperated rabbits served as controls. The IFP of the ACLT, contralateral, and control knees were harvested following euthanasia 2 or 8 weeks post-ACLT and their FA composition was determined with gas chromatography-mass spectrometry. RESULTS: The n-3/n-6 polyunsaturated FA (PUFA) ratio shifted in a pro-inflammatory direction after ACLT, already observed 2 weeks after the operation (0.20 ± 0.008 vs. 0.18 ± 0.009). At 8 weeks, the FA profile of the ACLT group was characterized with increased percentages of 20:4n-6 (0.44 ± 0.064 vs. 0.98 ± 0.339 mol-%) and 22:6n-3 (0.03 ± 0.014 vs. 0.07 ± 0.015 mol-%) and with decreased monounsaturated FA (MUFA) sums (37.19 ± 1.586 vs. 33.20 ± 1.068 mol-%) and n-3/n-6 PUFA ratios (0.20 ± 0.008 vs. 0.17 ± 0.008). The FA signature of the contralateral knees resembled that of the unoperated controls in most aspects, but had increased proportions of total n-3 PUFA and reduced MUFA sums. CONCLUSIONS: These findings provide novel information on the effects of early OA on the infrapatellar FA profile in the rabbit ACLT model. The reduction in the n-3/n-6 PUFA ratio of the IFP is in concordance with the inflammation and cartilage degradation in early OA and could contribute to disease pathogenesis.


Assuntos
Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Osteoartrite do Joelho/metabolismo , Patela/metabolismo , Tecido Adiposo/metabolismo , Animais , Ligamento Cruzado Anterior/cirurgia , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Osteoartrite do Joelho/etiologia , Coelhos
19.
J Biomech ; 79: 15-20, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30195849

RESUMO

INTRODUCTION: In this study, we tested two assumptions that have been made in experimental studies on muscle mechanics: (i) that the torque-angle properties are similar among agonistic muscles crossing a joint, and (ii) that the sum of the torque capacity of individual muscles adds up to the torque capacity of the agonist group. METHODS: Maximum isometric torque measurements were made using a specifically designed animal knee extension dynamometer for the intact rabbit quadriceps muscles (n = 10) for knee angles between 60 and 120°. The nerve branches of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) muscles were carefully dissected, and a custom made nerve cuff electrode was implanted on each branch. Knee extensor torques were measured for four maximal activation conditions at each knee angle: VL activation, VM activation, RF activation, and activation of all three muscles together. RESULTS: With the exception of VL, the torque-angle relationships of the individual muscles did not have the shape of the torque-angle relationship obtained when all muscles were activated simultaneously. Furthermore, the maximum torque capacity obtained by adding the individual torque capacities of VL, VM and RF was approximately 20% higher than the torques produced when the three muscles were activated simultaneously. DISCUSSION: These results bring into question our understanding of in-vivo muscle contraction and challenge assumptions that are sometimes made in human and animal muscle force analyses.


Assuntos
Músculo Quadríceps/fisiologia , Animais , Fenômenos Biomecânicos , Eletromiografia , Feminino , Contração Isométrica/fisiologia , Articulações/fisiologia , Coelhos , Torque
20.
J Biomech ; 48(10): 1700-6, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26087882

RESUMO

Botulinum toxin type-A (BTX-A) injections have become a common treatment modality for patients suffering from muscle spasticity. Despite its benefits, BTX-A treatments have been associated with adverse effects on target muscles. Currently, application of BTX-A is largely based on clinical experience, and research quantifying muscle structure following BTX-A treatment has not been performed systematically. The purpose of this study was to evaluate strength, muscle mass, and contractile material six months following a single or repeated (2 and 3) BTX-A injections into the quadriceps femoris of New Zealand white rabbits. Twenty three skeletally mature rabbits were divided into four groups: experimental group rabbits received 1, 2, or 3 injections at intervals of 3 months (1-BTX-A, 2-BTX-A, 3-BTX-A, respectively) while control group rabbits received volume-matched saline injections. Knee extensor strength, quadriceps muscle mass, and quadriceps contractile material of the experimental group rabbits were expressed as a percentage change relative to the control group rabbits. One-way ANOVA was used to determine group differences in outcome measures (α=0.05). Muscle strength and contractile material were significantly reduced in experimental compared to control group rabbits but did not differ between experimental groups. Muscle mass was the same in experimental BTX-A and control group rabbits. We concluded from these results that muscle strength and contractile material do not fully recover within six months of BTX-A treatment.


Assuntos
Toxinas Botulínicas Tipo A/efeitos adversos , Debilidade Muscular/induzido quimicamente , Músculo Quadríceps/efeitos dos fármacos , Animais , Toxinas Botulínicas Tipo A/farmacologia , Feminino , Injeções Intramusculares , Articulação do Joelho/fisiologia , Contração Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Fenótipo , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiologia , RNA Mensageiro/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA