Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927826

RESUMO

Pediatric gait rehabilitation and guidance strategies using robotic exoskeletons require a controller that encourages user volitional control and participation while guiding the wearer towards a stable gait cycle. Virtual constraint-based controllers have created stable gait cycles in bipedal robotic systems and have seen recent use in assistive exoskeletons. This paper evaluates a virtual constraint-based controller for pediatric gait guidance through comparison with a traditional time-dependent position tracking controller on a newly developed exoskeleton system. Walking experiments were performed with a healthy child subject wearing the exoskeleton under proportional-derivative control, virtual constraint-based control, and while unpowered. The participant questionnaires assessed the perceived exertion and controller usability measures, while sensors provided kinematic, control torque, and muscle activation data. The virtual constraint-based controller resulted in a gait similar to the proportional-derivative controlled gait but reduced the variability in the gait kinematics by 36.72% and 16.28% relative to unassisted gait in the hips and knees, respectively. The virtual constraint-based controller also used 35.89% and 4.44% less rms torque per gait cycle in the hips and knees, respectively. The user feedback indicated that the virtual constraint-based controller was intuitive and easy to utilize relative to the proportional-derivative controller. These results indicate that virtual constraint-based control has favorable characteristics for robot-assisted gait guidance.

2.
J Biomech Eng ; 146(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183222

RESUMO

This paper describes the development and evaluation of a novel, threshold-based gait event detection algorithm utilizing only one thigh inertial measurement unit (IMU) and unilateral, sagittal plane hip and knee joint angles. The algorithm was designed to detect heel strike (HS) and toe off (TO) gait events, with the eventual goal of detection in a real-time exoskeletal control system. The data used in the development and evaluation of the algorithm were obtained from two gait databases, each containing synchronized IMU and ground reaction force (GRF) data. All database subjects were healthy individuals walking in either a level-ground, urban environment or a treadmill lab environment. Inertial measurements used were three-dimensional thigh accelerations and three-dimensional thigh angular velocities. Parameters for the TO algorithm were identified on a per-subject basis. The GRF data were utilized to validate the algorithm's timing accuracy and quantify the fidelity of the algorithm, measured by the F1-Score. Across all participants, the algorithm reported a mean timing error of -41±20 ms with an F1-Score of 0.988 for HS. For TO, the algorithm reported a mean timing error of -1.4±21 ms with an F1-Score of 0.991. The results of this evaluation suggest that this algorithm is a promising solution to inertial based gait event detection; however, further refinement and real-time evaluation are required for use in exoskeletal control.


Assuntos
Marcha , Coxa da Perna , Humanos , Fenômenos Biomecânicos , Extremidade Inferior , Caminhada , Algoritmos
3.
Bioengineering (Basel) ; 9(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35621486

RESUMO

Exoskeleton technology has undergone significant developments for the adult population but is still lacking for the pediatric population. This paper presents the design of a hip-knee exoskeleton for children 6 to 11 years old with gait abnormalities. The actuators are housed in an adjustable exoskeleton frame where the thigh part can adjust in length and the hip cradle can adjust in the medial-lateral and posterior-anterior directions concurrently. Proper control of exoskeletons to follow nominal healthy gait patterns in a time-invariant manner is important for ease of use and user acceptance. In this paper, a hybrid zero dynamics (HZD) controller was designed for gait guidance by defining the zero dynamics manifold to resemble healthy gait patterns. HZD control utilizes a time-invariant feedback controller to create dynamically stable gaits in robotic systems with hybrid models containing both discrete and continuous dynamics. The effectiveness of the controller on the novel pediatric exoskeleton was demonstrated via simulation. The presented preliminary results suggest that HZD control provides a viable method to control the pediatric exoskeleton for gait guidance.

4.
J Biomech Eng ; 143(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008845

RESUMO

This paper presents an innovative design methodology for development of lower limb exoskeletons with the fabrication and experimental evaluation of prototype hardware. The proposed design approach is specifically conceived to be suitable for the pediatric population and uses additive manufacturing and a model parameterized in terms of subject anthropometrics to give a person-specific custom fit. The methodology is applied to create computer-aided design models using average anthropometrics of children 6-11 years old and using anthropometrics of an individual measured by the researchers. This demonstrates that the approach can scale to subject weight and height. A prototype exoskeleton is fabricated, which can actuate the hip and knee joints without restricting hip abduction-adduction motion. In order to test usability of the device and evaluate walking assistance, user effort is quantified in an assisted condition where the subject walks on a level treadmill with the exoskeleton powered. This is compared to an unassisted condition with the exoskeleton unpowered and a baseline condition with the subject not wearing the exoskeleton. Comparing assisted to baseline conditions, torque magnitudes increased at the hip and knee, mechanical energy generated increased at the hip but decreased at the knee, and muscle activations increased in the Vastus Lateralis but decreased in the Biceps Femoris. While the preliminary evidence for walking assistance is not entirely convincing for the tested conditions, the presented design methodology itself is promising as it has been successfully validated through the creation of computer-aided design models for children and fabrication of a serviceable exoskeleton prototype.


Assuntos
Exoesqueleto Energizado
5.
IEEE Int Conf Rehabil Robot ; 2019: 676-681, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374709

RESUMO

The nominal gait of each individual is unique and varies with the walking speed of the person. This poses a difficult problem for powered rehabilitative orthoses since control strategies often require a reference trajectory and give little control to the patient. This paper describes a simple control approach which applies torque resistive to joint movement that is unnatural for healthy individuals in the hip and knee joints during the swing phase of gait. The controller uses a configuration-dependent orthonormal basis to represent vectors in terms of components which are tangent and normal to healthy gait patterns for a continuum of gait speeds. The controller damps motion in the normal direction, thereby resisting movement which is unnatural for healthy individuals. With this control law, subjects are not restricted to a particular reference trajectory and have a large degree of volition over spatiotemporal gait parameters (e.g., stride length, swing time, and cadence). Experiments are conducted to check the feasibility of the control law in a provisional powered pediatric lower-limb orthosis. The gait guidance controller is used in conjunction with a human controller representing an individual with gait impairment. The main results compare gait shape quality when the gait guidance controller is enabled versus disabled, and show how the gait guidance controller is able to reshape gait to more closely resemble that of a healthy individual for various cadences.


Assuntos
Marcha/fisiologia , Extremidade Inferior/fisiopatologia , Movimento (Física) , Aparelhos Ortopédicos , Criança , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA