Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(25): 10979-10990, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38868922

RESUMO

Global demand for housing and the climate crisis have created a seemingly impossible choice between the need to build more and the need to emit less from construction materials. Here, we present the future infrastructure growth (FIG) model, a generalizable method for finding pathways to build enough housing and infrastructure while reducing material emissions, in line with climate commitments. FIG uses open data to quantify the emissions of existing neighborhoods as if they were built new; it then uses these quantifications to forecast future cradle-to-gate embodied emissions from new residential buildings and linear infrastructure construction. This novel approach allows for detailed analysis that scales to a city, region, and/or national level and captures variability in construction norms, designs, and codes. We demonstrate FIG on Canada, using the model to find neighborhood-level drivers of embodied emissions and the most effective reduction strategies through 2030 and 2050. Current construction practices will cause a 437% overshoot of Canada's climate commitments if housing growth targets are met. Avoiding this overshoot requires a near-total reliance on multiunit buildings and best-in-class design supported by improvements in material manufacturing, building within existing urban boundaries, and halving the use of new materials.


Assuntos
Gases de Efeito Estufa , Habitação , Canadá , Materiais de Construção , Modelos Teóricos
2.
Sci Data ; 11(1): 418, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653964

RESUMO

The construction materials used in buildings have large and growing implications for global material flows and emissions. Material Intensity (MI) is a metric that measures the mass of construction materials per unit of a building's floor area. MIs are used to model buildings' materials and assess their resource use and environmental performance, critical to global climate commitments. However, MI data availability and quality are inconsistent, incomparable, and limited, especially for regions in the Global South. To address these challenges, we present the Regional Assessment of buildings' Material Intensities (RASMI), a new dataset and accompanying method of comprehensive and consistent representative MI value ranges that embody the variability inherent in buildings. RASMI consists of 3072 MI ranges for 8 construction materials in 12 building structure and function types across 32 regions covering the entire world. The dataset is reproducible, traceable, and updatable, using synthetic data when required. It can be used for estimating historical and future material flows and emissions, assessing demolition waste and at-risk stocks, and evaluating urban mining potentials.

3.
Environ Sci Technol ; 57(23): 8548-8558, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37262367

RESUMO

The promotion of sustainable mobility choices is a crucial element of transport decarbonization. It requires a fundamental understanding of the choices available to urban dwellers and of the equity and justice implications of green mobility solutions. In this study, we quantified personal mobility-related greenhouse gas (GHG) emissions in the Greater Toronto and Hamilton Area (GTHA) and their associations with various land use, built environment, and socioeconomic factors. Our study captured personal, household, and neighborhood-level characteristics that are related to high emissions and disparities in emissions across the study region. We observed that the top 30% of emitters generated 70% of all transportation GHG emissions. Household income, family size, and vehicle ownership were associated with increased mobility emissions, while increased population density was associated with lower emissions. The percentage of visible minorities in a neighborhood was associated with lower emissions, but this effect was small. We further contrasted the spatial distribution of traffic-related air pollution with mobility GHG emissions. The results suggest that individuals who emit less GHG live in areas with higher air pollution. A computer vision-based model was used to predict GHG emissions from aerial images of neighborhoods, demonstrating that areas with high land use mixture were linked to a lower generation of mobility-based GHG emissions.


Assuntos
Poluição do Ar , Gases de Efeito Estufa , Humanos , Carbono , Gases de Efeito Estufa/análise , Poluição do Ar/análise , Emissões de Veículos/análise , Simulação por Computador , Efeito Estufa
4.
Environ Sci Technol ; 56(24): 18050-18059, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36455072

RESUMO

Roads play a key role in movements of goods and people but require large amounts of materials emitting greenhouse gases to be produced. This study assesses the global road material stock and the emissions associated with materials' production. Our bottom-up approach combines georeferenced paved road segments with road length statistics and archetypical geometric characteristics of roads. We estimate road material stock to be of 254 Gt. If we were to build these roads anew, raw material production would emit 8.4 GtCO2-eq. Per capita stocks range from 0.2 t/cap in Chad to 283 t/cap in Iceland, with a median of 20.6 t/cap. If the average per capita stock in Africa was to reach the current European level, 166 Gt of road materials, equivalent to the road material stock in North America and in East and South Asia, would be consumed. At the urban scale, road material stock increases with the urban area, population density, and GDP per capita, emphasizing the need for containing urban expansion. Our study highlights the challenges in estimating road material stock and serves as a basis for further research into infrastructure resource management.


Assuntos
Gases de Efeito Estufa , Humanos , África , Ásia Meridional , América do Norte
5.
Sci Data ; 9(1): 42, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140241

RESUMO

The building sector is a voracious consumer of primary materials. However, the study of building material use and associated impacts is challenged by the paucity of publicly available data in the field and the heterogeneity of data organization and classification between published studies. This paper makes two main contributions. First, we propose and demonstrate a building material data structure adapted from UniFormat and MasterFormat, two widely used construction classification systems in North America. Second, the dataset included provides fine grained material data for 70 buildings in North America. The dataset was developed by collecting design or construction drawings for the studied buildings and performing material takeoffs based on these drawings. The ontology is based on UniFormat and MasterFormat to facilitate interoperability with existing construction management practices, and to suggest a standardized structure for future material intensity studies. The data structure supports investigation into how form and building design are driving material use, opportunities to reduce construction material consumption and better understanding of how materials are used in buildings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA