Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Arthritis Res Ther ; 26(1): 117, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845046

RESUMO

BACKGROUND: The objective of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of PF­06835375, a potent selective afucosyl immunoglobulin G1 antibody targeting C-X-C chemokine receptor type 5 (CXCR5) that potentially depletes B cells, follicular T helper (Tfh) cells, and circulating Tfh-like (cTfh) cells, in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). METHODS: This first-in-human, multicenter, double-blind, sponsor-open, placebo-controlled Phase 1 study recruited patients aged 18-70 years with SLE or RA. In Part A, patients received single doses of intravenous PF-06835375 (dose range: 0.03-6 mg) or placebo in six sequential single ascending dose (SAD) cohorts. In Part B, patients received repeat doses of subcutaneous PF-06835375 (dose range: 0.3-10 mg) or placebo on Days 1 and 29 in five multiple ascending dose (MAD) cohorts. Tetanus/Diphtheria (Td) and Meningococcal B (MenB/Trumenba™) vaccines were administered at Day 4 (Td and MenB) and Week 8 (MenB only) to assess PF-06835375 functional effects. Endpoints included treatment-emergent adverse events (TEAEs), pharmacokinetic parameters, pharmacodynamic effects on B and cTfh cells, and biomarker counts, vaccine response, and exploratory differential gene expression analysis. Safety, pharmacokinetic, and pharmacodynamic endpoints are summarized descriptively. The change from baseline of B and Tfh cell-specific genes over time was calculated using a prespecified mixed-effects model, with a false discovery rate < 0.05 considered statistically significant. RESULTS: In total, 73 patients were treated (SAD cohorts: SLE, n = 17; RA, n = 14; MAD cohorts: SLE, n = 22; RA, n = 20). Mean age was 53.3 years. Sixty-two (84.9%) patients experienced TEAEs (placebo n = 17; PF-06835375 n = 45); most were mild or moderate. Three (9.7%) patients experienced serious adverse events. Mean t1/2 ranged from 3.4-121.4 h (SAD cohorts) and 162.0-234.0 h (MAD cohorts, Day 29). B and cTfh cell counts generally showed dose-dependent reductions across cohorts (range of mean maximum depletion: 67.3-99.3%/62.4-98.7% [SAD] and 91.1-99.6%/89.5-98.1% [MAD], respectively). B cell-related genes and pathways were significantly downregulated in patients treated with PF-06835375. CONCLUSIONS: These data support further development of PF-06835375 to assess the clinical potential for B and Tfh cell depletion as a treatment for autoimmune diseases. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03334851.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Receptores CXCR5 , Humanos , Pessoa de Meia-Idade , Adulto , Método Duplo-Cego , Feminino , Masculino , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Idoso , Adulto Jovem , Relação Dose-Resposta a Droga , Adolescente , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antirreumáticos/farmacocinética , Antirreumáticos/administração & dosagem , Antirreumáticos/uso terapêutico , Antirreumáticos/efeitos adversos
2.
Cell Rep ; 42(11): 113421, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952154

RESUMO

We explore the changes in chromatin accessibility and transcriptional programs for cochlear hair cell differentiation from postmitotic supporting cells using organoids from postnatal cochlea. The organoids contain cells with transcriptional signatures of differentiating vestibular and cochlear hair cells. Construction of trajectories identifies Lgr5+ cells as progenitors for hair cells, and the genomic data reveal gene regulatory networks leading to hair cells. We validate these networks, demonstrating dynamic changes both in expression and predicted binding sites of transcription factors (TFs) during organoid differentiation. We identify known regulators of hair cell development, Atoh1, Pou4f3, and Gfi1, and the analysis predicts the regulatory factors Tcf4, an E-protein and heterodimerization partner of Atoh1, and Ddit3, a CCAAT/enhancer-binding protein (C/EBP) that represses Hes1 and activates transcription of Wnt-signaling-related genes. Deciphering the signals for hair cell regeneration from mammalian cochlear supporting cells reveals candidates for hair cell (HC) regeneration, which is limited in the adult.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cóclea , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Organoides/metabolismo , Mamíferos/metabolismo
3.
Genes Dev ; 36(1-2): 38-52, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969824

RESUMO

Barrett's esophagus (BE) and gastric intestinal metaplasia are related premalignant conditions in which areas of human stomach epithelium express mixed gastric and intestinal features. Intestinal transcription factors (TFs) are expressed in both conditions, with unclear causal roles and cis-regulatory mechanisms. Ectopic CDX2 reprogrammed isogenic mouse stomach organoid lines to a hybrid stomach-intestinal state transcriptionally similar to clinical metaplasia; squamous esophageal organoids resisted this CDX2-mediated effect. Reprogramming was associated with induced activity at thousands of previously inaccessible intestine-restricted enhancers, where CDX2 occupied DNA directly. HNF4A, a TF recently implicated in BE pathogenesis, induced weaker intestinalization by binding a novel shadow Cdx2 enhancer and hence activating Cdx2 expression. CRISPR/Cas9-mediated germline deletion of that cis-element demonstrated its requirement in Cdx2 induction and in the resulting activation of intestinal genes in stomach cells. dCas9-conjugated KRAB repression mapped this activity to the shadow enhancer's HNF4A binding site. Altogether, we show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy.


Assuntos
Esôfago de Barrett , Fatores de Transcrição , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Fator de Transcrição CDX2/genética , Proteínas de Homeodomínio/genética , Metaplasia/genética , Camundongos , Fatores de Transcrição/genética
4.
Annu Rev Physiol ; 83: 405-427, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33234018

RESUMO

The cardinal properties of adult tissue stem cells are self-renewal and the ability to generate diverse resident cell types. The daily losses of terminally differentiated intestinal, skin, and blood cells require "professional" stem cells to produce replacements. This occurs by continuous expansion of stem cells and their immediate progeny, followed by coordinated activation of divergent transcriptional programs to generate stable cells with diverse functions. Other tissues turn over slowly, if at all, and vary widely in strategies for facultative stem cell activity or interconversion among mature resident cell types (transdifferentiation). Cell fate potential is programmed in tissue-specific configurations of chromatin, which restrict the complement of available genes and cis-regulatory elements, hence allowing specific cell types to arise. Using as a model the transcriptional and chromatin basis of cell differentiation and dedifferentiation in intestinal crypts, we discuss here how self-renewing and other tissues execute homeostatic and injury-responsive stem cell activity.


Assuntos
Plasticidade Celular/genética , Plasticidade Celular/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Intestinos/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Humanos
5.
Cell Mol Gastroenterol Hepatol ; 9(4): 587-609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31778829

RESUMO

BACKGROUND & AIMS: Self-renewal and multipotent differentiation are cardinal properties of intestinal stem cells (ISCs), mediated in part by WNT and NOTCH signaling. Although these pathways are well characterized, the molecular mechanisms that control the 'stemness' of ISCs are still not well defined. Here, we investigated the role of Krüppel-like factor 5 (KLF5) in regulating ISC functions. METHODS: We performed studies in adult Lgr5EGFP-IRES-creERT2;Rosa26LSLtdTomato (Lgr5Ctrl) and Lgr5EGFP-IRES-creERT2;Klf5fl/fl;Rosa26LSLtdTomato (Lgr5ΔKlf5) mice. Mice were injected with tamoxifen to activate Cre recombinase, which deletes Klf5 from the intestinal epithelium in Lgr5ΔKlf5 but not Lgr5Crtl mice. In experiments involving irradiation, mice were subjected to 12 Gy total body irradiation (TBI). Tissues were collected for immunofluorescence (IF) analysis and next generation sequencing. Oganoids were derived from fluoresecence activated cell sorted- (FACS-) single cells from tamoxifen-treated Lgr5ΔKlf5 or Lgr5Crtl mice and examined by immunofluorescence stain. RESULTS: Lgr5+ ISCs lacking KLF5 proliferate faster than control ISCs but fail to self-renew, resulting in a depleted ISC compartment. Transcriptome analysis revealed that Klf5-null Lgr5+ cells lose ISC identity and prematurely differentiate. Following irradiation injury, which depletes Lgr5+ ISCs, reserve Klf5-null progenitor cells fail to dedifferentiate and regenerate the epithelium. Absence of KLF5 inactivates numerous selected enhancer elements and direct transcriptional targets including canonical WNT- and NOTCH-responsive genes. Analysis of human intestinal tissues showed increased levels of KLF5 in the regenerating epithelium as compared to those of healthy controls. CONCLUSION: We conclude that ISC self-renewal, lineage specification, and precursor dedifferentiation require KLF5, by its ability to regulate epigenetic and transcriptional activities of ISC-specific gene sets. These findings have the potential for modulating ISC functions by targeting KLF5 in the intestinal epithelium.


Assuntos
Células-Tronco Adultas/fisiologia , Mucosa Intestinal/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Lesões por Radiação/patologia , Regeneração/genética , Células-Tronco Adultas/efeitos da radiação , Animais , Estudos de Casos e Controles , Linhagem da Célula/genética , Autorrenovação Celular/genética , Células Cultivadas , Colite/etiologia , Colite/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Enterite/etiologia , Enterite/patologia , Epigênese Genética , Feminino , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos da radiação , Fatores de Transcrição Kruppel-Like/análise , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Transgênicos , Organoides , Cultura Primária de Células , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Ativação Transcricional , Irradiação Corporal Total , Via de Sinalização Wnt/genética
6.
Development ; 146(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30745430

RESUMO

Lineage-restricted transcription factors, such as the intestine-specifying factor CDX2, often have dual requirements across developmental time. Embryonic loss of CDX2 triggers homeotic transformation of intestinal fate, whereas adult-onset loss compromises crucial physiological functions but preserves intestinal identity. It is unclear how such diverse requirements are executed across the developmental continuum. Using primary and engineered human tissues, mouse genetics, and a multi-omics approach, we demonstrate that divergent CDX2 loss-of-function phenotypes in embryonic versus adult intestines correspond to divergent CDX2 chromatin-binding profiles in embryonic versus adult stages. CDX2 binds and activates distinct target genes in developing versus adult mouse and human intestinal cells. We find that temporal shifts in chromatin accessibility correspond to these context-specific CDX2 activities. Thus, CDX2 is not sufficient to activate a mature intestinal program; rather, CDX2 responds to its environment, targeting stage-specific genes to contribute to either intestinal patterning or mature intestinal function. This study provides insights into the mechanisms through which lineage-specific regulatory factors achieve divergent functions over developmental time.


Assuntos
Fator de Transcrição CDX2/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Intestinos/embriologia , Animais , Fator de Transcrição CDX2/genética , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem da Célula , Feminino , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Mutação , Células-Tronco Pluripotentes/citologia , Ligação Proteica , Domínios Proteicos , Transativadores/metabolismo
7.
Genes Dev ; 32(21-22): 1430-1442, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366903

RESUMO

After acquiring competence for selected cell fates, embryonic primordia may remain plastic for variable periods before tissue identity is irrevocably determined (commitment). We investigated the chromatin basis for these developmental milestones in mouse endoderm, a tissue with recognizable rostro-caudal patterning and transcription factor (TF)-dependent interim plasticity. Foregut-specific enhancers are as accessible and active in early midgut as in foregut endoderm, and intestinal enhancers and identity are established only after ectopic cis-regulatory elements are decommissioned. Depletion of the intestinal TF CDX2 before this cis element transition stabilizes foregut enhancers, reinforces ectopic transcriptional programs, and hence imposes foregut identities on the midgut. Later in development, as the window of chromatin plasticity elapses, CDX2 depletion weakens intestinal, without strengthening foregut, enhancers. Thus, midgut endoderm is primed for heterologous cell fates, and TFs act on a background of shifting chromatin access to determine intestinal at the expense of foregut identity. Similar principles likely govern other fate commitments.


Assuntos
Endoderma/metabolismo , Elementos Facilitadores Genéticos , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Transcrição Gênica , Animais , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Cromatina/metabolismo , Endoderma/embriologia , Intestinos/anatomia & histologia , Camundongos
8.
Cell Stem Cell ; 21(1): 65-77.e5, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28648363

RESUMO

Replicating Lgr5+ stem cells and quiescent Bmi1+ cells behave as intestinal stem cells (ISCs) in vivo. Disrupting Lgr5+ ISCs triggers epithelial renewal from Bmi1+ cells, from secretory or absorptive progenitors, and from Paneth cell precursors, revealing a high degree of plasticity within intestinal crypts. Here, we show that GFP+ cells from Bmi1GFP mice are preterminal enteroendocrine cells and we identify CD69+CD274+ cells as related goblet cell precursors. Upon loss of native Lgr5+ ISCs, both populations revert toward an Lgr5+ cell identity. While active histone marks are distributed similarly between Lgr5+ ISCs and progenitors of both major lineages, thousands of cis elements that control expression of lineage-restricted genes are selectively open in secretory cells. This accessibility signature dynamically converts to that of Lgr5+ ISCs during crypt regeneration. Beyond establishing the nature of Bmi1GFP+ cells, these findings reveal how chromatin status underlies intestinal cell diversity and dedifferentiation to restore ISC function and intestinal homeostasis.


Assuntos
Desdiferenciação Celular , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Receptores Acoplados a Proteínas G , Células-Tronco/metabolismo , Animais , Duodeno/citologia , Células Enteroendócrinas/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia
9.
Genes Dev ; 31(23-24): 2391-2404, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321178

RESUMO

Compacted chromatin and nucleosomes are known barriers to gene expression; the nature and relative importance of other transcriptional constraints remain unclear, especially at distant enhancers. Polycomb repressor complex 2 (PRC2) places the histone mark H3K27me3 predominantly at promoters, where its silencing activity is well documented. In adult tissues, enhancers lack H3K27me3, and it is unknown whether intergenic H3K27me3 deposits affect nearby genes. In primary intestinal villus cells, we identified hundreds of tissue-restricted enhancers that require the transcription factor (TF) CDX2 to prevent the incursion of H3K27me3 from adjoining areas of elevated basal marking into large well-demarcated genome domains. Similarly, GATA1-dependent enhancers exclude H3K27me3 from extended regions in erythroid blood cells. Excess intergenic H3K27me3 in both TF-deficient tissues is associated with extreme mRNA deficits, which are significantly rescued in intestinal cells lacking PRC2. Explaining these observations, enhancers show TF-dependent binding of the H3K27 demethylase KDM6A. Thus, in diverse cell types, certain genome regions far from promoters accumulate H3K27me3, and optimal gene expression depends on enhancers clearing this repressive mark. These findings reveal new "anti-repressive" function for hundreds of tissue-specific enhancers.


Assuntos
Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica , Genoma/genética , Histonas/metabolismo , Intestino Delgado/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fator de Transcrição CDX2/genética , Células Eritroides/metabolismo , Feminino , Histona Desmetilases/metabolismo , Intestino Delgado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica
10.
Cell Rep ; 16(8): 2053-2060, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524622

RESUMO

Lgr5(+) intestinal stem cells (ISCs) drive epithelial self-renewal, and their immediate progeny-intestinal bipotential progenitors-produce absorptive and secretory lineages via lateral inhibition. To define features of early transit from the ISC compartment, we used a microfluidics approach to measure selected stem- and lineage-specific transcripts in single Lgr5(+) cells. We identified two distinct cell populations, one that expresses known ISC markers and a second, abundant population that simultaneously expresses markers of stem and mature absorptive and secretory cells. Single-molecule mRNA in situ hybridization and immunofluorescence verified expression of lineage-restricted genes in a subset of Lgr5(+) cells in vivo. Transcriptional network analysis revealed that one group of Lgr5(+) cells arises from the other and displays characteristics expected of bipotential progenitors, including activation of Notch ligand and cell-cycle-inhibitor genes. These findings define the earliest steps in ISC differentiation and reveal multilineage gene priming as a fundamental property of the process.


Assuntos
Linhagem da Célula/genética , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Animais , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Genes Reporter , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Intestinos/citologia , Camundongos , Camundongos Transgênicos , Técnicas Analíticas Microfluídicas , Mucina-2/genética , Mucina-2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única , Células-Tronco/citologia
11.
Cell ; 165(6): 1389-1400, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27212235

RESUMO

Bivalent promoters in embryonic stem cells (ESCs) carry methylation marks on two lysine residues, K4 and K27, in histone3 (H3). K4me2/3 is generally considered to promote transcription, and Polycomb Repressive Complex 2 (PRC2) places K27me3, which is erased at lineage-restricted genes when ESCs differentiate in culture. Molecular defects in various PRC2 null adult tissues lack a unifying explanation. We found that epigenomes in adult mouse intestine and other self-renewing tissues show fewer and distinct bivalent promoters compared to ESCs. Groups of tissue-specific genes that carry bivalent marks are repressed, despite the presence of promoter H3K4me2/3. These are the predominant genes de-repressed in PRC2-deficient adult cells, where aberrant expression is proportional to the H3K4me2/3 levels observed at their promoters in wild-type cells. Thus, in adult animals, PRC2 specifically represses genes with acquired, tissue-restricted promoter bivalency. These findings provide new insights into specificity in chromatin-based gene regulation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Complexo Repressor Polycomb 2/genética , Regiões Promotoras Genéticas , Animais , Diferenciação Celular/genética , Metilação de DNA , Regulação da Expressão Gênica , Histonas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Complexo Repressor Polycomb 2/metabolismo
12.
Oncotarget ; 7(21): 31037-52, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27105540

RESUMO

Cancer is a multistep process that requires cells to respond appropriately to the tumor microenvironment, both in early proliferative stages and in later invasive disease. Arl8b is a lysosome localized Arf-like GTPase that controls the spatial distribution of lysosomes via recruitment of kinesin motors. Common features of the tumor microenvironment such as acidic extracellular pH and various growth factors stimulate lysosome trafficking to the cell periphery (anterograde), which is critical for tumor invasion by facilitating the release of lysosomal proteases to promote matrix remodeling. Herein we report for the first time that Arl8b regulates anterograde lysosome trafficking in response to hepatocyte growth factor, epidermal growth factor, and acidic extracellular pH. Depletion of Arl8b results in juxtanuclear lysosome aggregation, and this effect corresponds with both diminished invasive growth and proteolytic extracellular matrix degradation in a three-dimensional model of prostate cancer. Strikingly, we found that depletion of Arl8b abolishes the ability of prostate cancer cells to establish subcutaneous xenografts in mice. We present evidence that Arl8b facilitates lipid hydrolysis to maintain efficient metabolism for a proliferative capacity in low nutrient environments, suggesting a likely explanation for the complete inability of Arl8b-depleted tumor cells to grow in vivo. In conclusion, we have identified two mechanisms by which Arl8b regulates cancer progression: 1) through lysosome positioning and protease release leading to an invasive phenotype and 2) through control of lipid metabolism to support cellular proliferation. These novel roles highlight that Arl8b is a potential target for the development of novel anti-cancer therapeutics.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Neoplasias da Próstata/enzimologia , Fatores de Ribosilação do ADP/genética , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos SCID , Invasividade Neoplásica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdução de Sinais
13.
PLoS One ; 9(6): e98861, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24897117

RESUMO

The Wnt signaling pathway is often chronically activated in diverse human tumors, and the Frizzled (FZD) family of receptors for Wnt ligands, are central to propagating oncogenic signals in a ß-catenin-dependent and independent manner. SIRT1 is a class III histone deacetylase (HDAC) that deacetylates histone and non-histone proteins to regulate gene transcription and protein function. We previously demonstrated that SIRT1 loss of function led to a significant decrease in the levels of Dishevelled (Dvl) proteins. To further explore this connection between the sirtuins and components of the Wnt pathway, we analyzed sirtuin-mediated regulation of FZD proteins. Here we explore the contribution of sirtuin deacetylases in promoting constitutive Wnt pathway activation in breast cancer cells. We demonstrate that the use of small molecule inhibitors of SIRT1 and SIRT2, and siRNA specific to SIRT1, all reduce the levels of FZD7 mRNA. We further demonstrate that pharmacologic inhibition of SIRT1/2 causes a marked reduction in FZD7 protein levels. Additionally, we show that ß-catenin and c-Jun occupy the 7 kb region upstream of the transcription start site of the FZD7 gene, and SIRT1 inhibition leads to a reduction in the occupancy of both ß-catenin and c-Jun at points along this region. This work uncovers a new mechanism for the regulation of FZD7 and provides a critical new link between the sirtuins and FZD7, one of the earliest nodal points from which oncogenic Wnt signaling emanates. This study shows that inhibition of specific sirtuins may provide a unique strategy for inhibiting the constitutively active Wnt pathway at the level of the receptor.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores Frizzled/genética , Regulação Neoplásica da Expressão Gênica , Sirtuína 1/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Naftalenos/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Pirimidinonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo , beta Catenina/genética
14.
Mol Endocrinol ; 27(3): 480-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23340254

RESUMO

Breast cancer remains one of the leading causes of death in women diagnosed with cancer. In breast cancer, aberrant expression of the CYP19A1 gene, which encodes the aromatase enzyme, contributes to increased intratumoral levels of estradiol. Regardless of whether this estrogen is produced by peripheral tissues or within specific subpopulations of cells within the breast tumor, it is clear that the aromatase enzymatic activity is critical for the growth of estrogen-dependent tumors. Currently, aromatase inhibitors have proven to be highly effective in blocking the growth of estrogen-dependent forms of breast cancer. CYP19A1 transcription is tightly controlled by 10 tissue-specific promoters. In breast cancer, however, aromatase transcription is driven by multiple promoters that somehow override the tissue-specific regulation of normal tissue. Here, we explore the role that the deacetylase, sirtuin-1 (SIRT1), plays in positively regulating aromatase in breast cancer. We demonstrate that the use of cambinol and the SIRT1/2 inhibitor VII, 2 small molecule inhibitors of SIRT1 and SIRT2, as well as small molecule inhibitors and small interfering RNA specific to SIRT1, all reduce the levels of aromatase mRNA. We further demonstrate that pharmacologic inhibition causes a marked reduction in aromatase protein levels. Additionally, by chromatin immunoprecipitation, we demonstrate that SIRT1 occupies the promoter regions PI.3/PII and PI.4, and its inhibition leads to increased acetylation of estrogen-related receptorα, a transcription factor that positively regulates CYP19A1 transcription in epithelial cells. Finally, we demonstrate by immunohistochemistry that SIRT1 is significantly up-regulated in invasive ductal carcinoma relative to normal tissue adjacent to tumor, further suggesting a role of SIRT1 in breast cancer. This work uncovers a new mechanism for the regulation of aromatase and provides rationale for further investigation of how the inhibition of specific sirtuins may provide a unique strategy for inhibiting aromatase that may complement or synergize with existing therapies.


Assuntos
Aromatase/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sirtuína 1/metabolismo , Aromatase/metabolismo , Carcinoma Ductal de Mama/enzimologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Invasividade Neoplásica , Regiões Promotoras Genéticas , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo
15.
Mutat Res ; 703(2): 169-73, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20801230

RESUMO

Tamoxifen is a synthetic non-steroidal Selective Estrogen Receptor Modulator used in the treatment of breast cancer and in treatment of male fertility. Earlier studies from our laboratory had demonstrated an increase in post-implantation embryo loss following tamoxifen treatment to adult male rats at a dose of 0.4mg/kg/day for 60 days. The post-implantation loss occurred at around 9-10 days of gestation suggesting that paternal factors involved in embryo development were affected by tamoxifen treatment. The present study was done to determine if any chromosomal aberrations occurred in the embryos sired by tamoxifen treated male rats. Chromosomal aberrations induced by tamoxifen treatment to adult male rats in the bone marrow (F(0) males) and in the embryos sired by these males (F(1) progeny) were determined. In addition, the reproductive performance of the F(1) progeny was assessed. A significant dose dependent reduction in mitotic activity in the bone marrow and embryonic cells was observed after tamoxifen treatment. In addition, tamoxifen also induced a significant dose dependent increase in the frequency of chromosomal aberrations, mainly gaps and breaks in bone marrow and embryonic cells. However, the embryos sired by the tamoxifen treated males had no effect on developmental milestones achieved and on their reproductive performance. The present study suggests that chromosomal aberrations observed in the embryos did not the affect their development until adulthood but could make the progeny of the tamoxifen treated males vulnerable to the development of adult onset diseases later in life.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Embrião de Mamíferos/efeitos dos fármacos , Antagonistas de Estrogênios/toxicidade , Prenhez , Tamoxifeno/toxicidade , Animais , Células da Medula Óssea/efeitos dos fármacos , Implantação do Embrião , Feminino , Masculino , Exposição Paterna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos
16.
Reprod Fertil Dev ; 22(6): 939-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20591328

RESUMO

Igf2, an imprinted gene that is paternally expressed in embryos, encodes an embryonic growth factor. An important regulator of Igf2 expression is methylation of the H19 differentially methylated region (DMR). A significant association has been observed between sperm methylation status at the H19 DMR and post-implantation loss. In addition, tamoxifen treatment has been shown to increase post-implantation loss and reduce DNA methylation at the H19 DMR in rat spermatozoa. Because this DMR is a primary DMR transmitting epigenetic imprint information from the gametes to the embryo, the aim of the present study was to determine the imprinting status of H19 DMR in post-implantation normal and resorbed embryos (F(1)) and to compare it with the H19 DMR in the spermatozoa of the respective sires. Analysis of the H19 DMR revealed methylation errors in resorbed embryo that were also observed in their sires' spermatozoa in the control and tamoxifen-treated groups. Expression analysis of the reciprocally imprinted genes Igf2 and H19 showed significant downregulation of Igf2 protein without any effect on H19 transcript levels in the resorbed embryos. The results indicate an association between disrupted imprinting status at the H19 DMR in resorbed embryos and the spermatozoa from their respective sires regardless of treatment, implying a common mechanism of resorption. The results demonstrate transmission of methylation errors at the Igf2-H19 locus through the paternal germline to the subsequent generation, emphasising the role of paternal factors during embryogenesis.


Assuntos
Metilação de DNA/genética , Perda do Embrião/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Animais , Western Blotting , Ilhas de CpG/genética , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Proc Natl Acad Sci U S A ; 107(20): 9216-21, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439735

RESUMO

Sirtuin 1 (SIRT1) is a class III histone deacetylase that deacetylates histone and nonhistone proteins to regulate gene transcription and protein function. Because SIRT1 regulates very diverse responses such as apoptosis, insulin sensitivity, autophagy, differentiation, and stem cell pluripotency, it has been a challenge to reconcile how it orchestrates such pleiotropic effects. Here we show that SIRT1 serves as an important regulator of Wnt signaling. We demonstrate that SIRT1 loss of function leads to a significant decrease in the levels of all three Dishevelled (Dvl) proteins. Furthermore, we demonstrate that SIRT1 and Dvl proteins complex in vivo and that inhibition of SIRT1 leads to changes in gene expression of Wnt target genes. Finally, we demonstrate that Wnt-stimulated cell migration is inhibited by a SIRT1 inhibitor. Because the three mammalian Dvl proteins serve as key messengers for as many as 19 Wnt ligands, SIRT1-mediated regulation of Dvl proteins may explain the diverse physiological responses observed in different cellular contexts. Previously, SIRT1 had only been shown to mediate the epigenetic silencing of Wnt antagonists. In contrast, here we report that SIRT1 regulates Dvl protein levels and Wnt signaling in several cellular contexts. These findings demonstrate that SIRT1 is a regulator of transient and constitutive Wnt signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica/fisiologia , Fosfoproteínas/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Proteínas Wnt/metabolismo , Western Blotting , Linhagem Celular , Movimento Celular/fisiologia , Primers do DNA/genética , Proteínas Desgrenhadas , Regulação da Expressão Gênica/genética , Humanos , Imunoprecipitação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Fertil Steril ; 91(5 Suppl): 2253-63, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18778817

RESUMO

OBJECTIVE: To determine the effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 imprinting control region (Igf2-H19 ICR)-specific DNA methylation in rat spermatozoa and analyze its association with postimplantation loss. DESIGN: Experimental prospective study. SETTING: Animal research and academic research facility. SUBJECT(S): Male and female 75-day-old Holtzman rats. INTERVENTION(S): Global and Igf2-H19 ICR-specific DNA methylation was analyzed in an epididymal sperm sample in control and tamoxifen-treated rats at a dose of 0.4 mg tamoxifen/kg/day. DNA methylation status was correlated to postimplantation loss in females mated with tamoxifen-treated males. MAIN OUTCOME MEASURE(S): Global sperm DNA methylation level, methylation status of Igf2-H19 ICR in sperm, postimplantation loss. RESULT(S): Tamoxifen treatment significantly reduced methylation at Igf2-H19 ICR in epididymal sperm. However, the global methylation level was not altered. A mating experiment confirmed a significant increase in postimplantation loss upon tamoxifen treatment and showed significant correlation with methylation at Igf2-H19 ICR. CONCLUSION(S): Reduced DNA methylation at Igf2-H19 ICR in rat spermatozoa upon tamoxifen treatment indicated a role of estrogen-associated signaling in the acquisition of paternal-specific imprints during spermatogenesis. In addition, association between DNA methylation and postimplantation loss suggests that errors in paternal imprints at Igf2-H19 ICR could affect embryo development.


Assuntos
Metilação de DNA/efeitos dos fármacos , Perda do Embrião/epidemiologia , Fator de Crescimento Insulin-Like II/genética , Espermatozoides/fisiologia , Tamoxifeno/farmacologia , Animais , Ilhas de CpG/efeitos dos fármacos , DNA/efeitos dos fármacos , DNA/genética , Perda do Embrião/prevenção & controle , Feminino , Masculino , Gravidez , Ratos , Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA