Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 123: 420-428, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28689126

RESUMO

The process performance of a MBR operated on municipal sewage at elevated temperatures was evaluated by dynamic modeling. The enhanced biological phosphorus removal (EBPR) performance varied from 40% to 95% with process temperature ranging from 24 to 38 °C. The respective maximum substrate uptake rate (qPHA) was estimated at 1.5 gCODS/gCODX.day-1 for Glycogen Accumulating Organisms (GAO) and 4.7 gCODS/gCODX.day-1 for Phosphate Accumulating Organisms (PAO) with Arrhenius coefficients (θ) for GAOs and PAOs of 1.06 and 1.04 respectively. With these parameters the effluent PO4 levels of the MBR operated for 450 days could be well described. In addition, the impact of mesophilic conditions and low influent P/VFA levels on GAO proliferation was evaluated under dynamic process conditions. Nitrification process was temporarily impaired at high temperatures around 38 °C. Simulations revealed that the contribution of the anoxic reactor to the total overall denitrification was limited to 40%The contribution of simultaneous nitrification and denitrification (SNdN) process to the denitrification was around 40-50% depending upon dissolved oxygen levels in aerobic and MBR tanks. The large contribution of SNdN was due to gas/liquid mass transfer limitation conditions mediated by high mixed liquor viscosities (20-35 mPa.S) in MBR system. The membrane flux was 43 L/m2/h corresponding to the specific permeability (K) of 413 L/m2/h/bar at 38 °C.


Assuntos
Reatores Biológicos , Esgotos , Temperatura , Fósforo , Purificação da Água
2.
Water Res ; 84: 8-17, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26204227

RESUMO

The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation.


Assuntos
Membranas Artificiais , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Fósforo/isolamento & purificação , Fósforo/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Desnitrificação , Temperatura , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA