Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Cancer ; 5(3): 384-399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531982

RESUMO

Cellular redox homeostasis is an essential, dynamic process that ensures the balance between reducing and oxidizing reactions within cells and thus has implications across all areas of biology. Changes in levels of reactive oxygen species can disrupt redox homeostasis, leading to oxidative or reductive stress that contributes to the pathogenesis of many malignancies, including cancer. From transformation and tumor initiation to metastatic dissemination, increasing reactive oxygen species in cancer cells can paradoxically promote or suppress the tumorigenic process, depending on the extent of redox stress, its spatiotemporal characteristics and the tumor microenvironment. Here we review how redox regulation influences tumorigenesis, highlighting therapeutic opportunities enabled by redox-related alterations in cancer cells.


Assuntos
Neoplasias , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio , Oxirredução , Carcinogênese , Microambiente Tumoral
2.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474205

RESUMO

Pulmonary adenocarcinoma (ADC) is a very diverse disease, both genetically and histologically, which displays extensive intratumor heterogeneity with numerous acquired mutations. ADC is the most common type of lung cancer and is believed to arise from adenocarcinoma in situ (AIS) which then progresses to minimally invasive adenocarcinoma (MIA). In patients of European ethnicity, we analyzed genetic mutations in AIS (n = 10) and MIA (n = 18) and compared the number of genetic mutations with advanced ADC (n = 2419). Using next-generation sequencing, the number of different mutations detected in both AIS (87.5%) and MIA (94.5%) were higher (p < 0.001) than in advanced ADC (53.7%). In contrast to the high number of mutations in Kirsten rat sarcoma virus gene (KRAS) in advanced ADC (34.6%), there was only one case of AIS with KRAS G12C mutation (3.5%; p < 0.001) and no cases of MIA with KRAS mutation (p < 0.001). In contrast to the modest prevalence of epidermal growth factor receptor (EGFR) mutations in advanced ADC (15.0%), the fraction of EGFR mutant cases was higher in both in AIS (22.2%) and MIA (59.5%; p < 0.001). The EGFR exon 19 deletion mutation was more common in both MIA (50%; n = 6/12) and ADC (41%; n = 149/363), whereas p.L858R was more prevalent in AIS (75%; n = 3/4). In contrast to pulmonary advanced ADC, KRAS driver mutations are less common, whereas mutations in EGFR are more common, in detectable AIS and MIA.


Assuntos
Adenocarcinoma in Situ , Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma in Situ/genética , Adenocarcinoma in Situ/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma/patologia , Neoplasias Pulmonares/metabolismo , Mutação , Receptores ErbB/metabolismo
3.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536921

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores Enzimáticos/uso terapêutico , Mutação
4.
Cell Rep ; 42(8): 112961, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37561633

RESUMO

Refractory and relapsed B cell lymphomas are often driven by the difficult-to-target oncogene MYC. Here, we report that high MYC expression stimulates proliferation and protects B lymphoma cells from apoptosis under normal oxidative stress levels and that compounds including N-acetylcysteine (NAC) and vitamin C (VitC) induce apoptosis by reducing oxidative stress. NAC and VitC injections effectively reduce tumor growth in lymphoma cells with high MYC expression but not in those with low MYC expression. MYC knockdown confers tumor resistance to NAC and VitC, while MYC activation renders B cells sensitive to these compounds. Mechanistically, NAC and VitC stimulate MYC binding to EGR1 through Cys117 of MYC, shifting its transcriptional output from cell cycle to apoptosis gene expression. These results identify a redox-controlled mechanism for MYC's role in maintaining proliferation and preventing apoptosis, offering a potential therapeutic rationale for evaluating NAC or VitC in patients with MYC-driven B cell lymphoma.

5.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425844

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.

6.
Nat Commun ; 14(1): 3479, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311819

RESUMO

Selenium homeostasis depends on hepatic biosynthesis of selenoprotein P (SELENOP) and SELENOP-mediated transport from the liver to e.g. the brain. In addition, the liver maintains copper homeostasis. Selenium and copper metabolism are inversely regulated, as increasing copper and decreasing selenium levels are observed in blood during aging and inflammation. Here we show that copper treatment increased intracellular selenium and SELENOP in hepatocytes and decreased extracellular SELENOP levels. Hepatic accumulation of copper is a characteristic of Wilson's disease. Accordingly, SELENOP levels were low in serum of Wilson's disease patients and Wilson's rats. Mechanistically, drugs targeting protein transport in the Golgi complex mimicked some of the effects observed, indicating a disrupting effect of excessive copper on intracellular SELENOP transport resulting in its accumulation in the late Golgi. Our data suggest that hepatic copper levels determine SELENOP release from the liver and may affect selenium transport to peripheral organs such as the brain.


Assuntos
Degeneração Hepatolenticular , Selênio , Animais , Ratos , Selenoproteína P , Cobre
7.
Free Radic Biol Med ; 191: 203-211, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084789

RESUMO

The transcription factor BACH1 regulates the expression of a variety of genes including genes involved in oxidative stress responses, inflammation, cell motility, cancer cell invasion and cancer metabolism. Based on this, BACH1 has become a promising therapeutic target in cancer (as anti-metastatic target) and also in chronic conditions linked to oxidative stress and inflammation, where BACH1 inhibitors share a therapeutic space with activators of transcription factor NRF2. However, while there is a growing number of NRF2 activators, there are only a few described BACH1 inhibitors/degraders. The synthetic acetylenic tricyclic bis(cyanoenone),(±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3.4b,7,8,8a,9,10, 10a-octahydrophenanthrene-2,6-dicarbonitrile, TBE31 is a potent activator of NRF2 without any BACH1 activity. Herein we found that biotinylation of TBE31 greatly reduces its potency as NRF2 activator (50-75-fold less active) while acquiring a novel activity as a BACH1 degrader (100-200-fold more active). We demonstrate that TBE56, the biotinylated TBE31, interacts and promotes the degradation of BACH1 via a mechanism involving the E3 ligase FBXO22. TBE56 is a potent and sustained BACH1 degrader (50-fold more potent than hemin) and accordingly a powerful HMOX1 inducer. TBE56 degrades BACH1 in lung and breast cancer cells, impairing breast cancer cell migration and invasion in a BACH1-dependent manner, while TBE31 has no significant effect. Altogether, our study identifies that the biotinylation of TBE31 provides novel activities with potential therapeutic value, providing a rationale for further characterisation of this and related compounds.


Assuntos
Neoplasias da Mama , Proteínas F-Box , Acetileno , Alcinos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Biotinilação , Proteínas F-Box/metabolismo , Feminino , Hemina , Humanos , Inflamação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
J Autoimmun ; 130: 102843, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35643017

RESUMO

Conditional mutation of protein geranylgeranyltransferase type I (GGTase-I) in macrophages (GLC) activates Rho-GTPases and causes arthritis in mice. Knocking out Rag1 in GLC mice alleviates arthritis which indicates that lymphocytes are required for arthritis development in those mice. To study GLC dependent changes in the adaptive immunity, we isolated CD4+ T cells from GLC mice (CD4+GLCs). Spleen and joint draining lymph nodes (dLN) CD4+GLCs exhibited high expression of Cdc42 and Rac1, which repressed the caudal HOXA proteins and activated the mechanosensory complex to facilitate migration. These CDC42/RAC1 rich CD4+GLCs presented a complete signature of GARP+NRP1+IKZF2+FOXP3+ regulatory T cells (Tregs) of thymic origin. Activation of the ß-catenin/Lef1 axis promoted a pro-inflammatory Th1 phenotype of Tregs, which was strongly associated with arthritis severity. Knockout of Cdc42 in macrophages of GLC mice affected CD4+ cell biology and triggered development of non-thymic Tregs. Knockout of Rac1 and RhoA had no such effects on CD4+ cells although it alleviated arthritis in GLC mice. Disrupting macrophage and T cell interaction with CTLA4 fusion protein reduced the Th1-driven inflammation and enrichment of thymic Tregs into dLNs. Antigen challenge reinforced the CD4+GLC phenotype in non-arthritic heterozygote GLC mice and increased accumulation of Rho-GTPase expressing thymic Tregs in dLNs. Our study demonstrates an unexpected role of macrophages in stimulating the development of pro-inflammatory thymic Tregs and reveal activation of Rho-GTPases behind their arthritogenic phenotype.


Assuntos
Artrite , Timo , Proteínas rho de Ligação ao GTP , Animais , Fatores de Transcrição Forkhead/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T Reguladores , Timo/imunologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
9.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565194

RESUMO

There is an urgent need to identify new predictive biomarkers for treatment response to both platinum doublet chemotherapy (PT) and immune checkpoint blockade (ICB). Here, we evaluated whether treatment outcome could be affected by KRAS mutational status in patients with metastatic (Stage IV) non-small cell lung cancer (NSCLC). All consecutive patients molecularly assessed and diagnosed between 2016−2018 with Stage IV NSCLC in the region of West Sweden were included in this multi-center retrospective study. The primary study outcome was overall survival (OS). Out of 580 Stage IV NSCLC patients, 35.5% harbored an activating mutation in the KRAS gene (KRASMUT). Compared to KRAS wild-type (KRASWT), KRASMUT was a negative factor for OS (p = 0.014). On multivariate analysis, KRASMUT persisted as a negative factor for OS (HR 1.478, 95% CI 1.207−1.709, p < 0.001). When treated with first-line platinum doublet (n = 195), KRASMUT was a negative factor for survival (p = 0.018), with median OS of 9 months vs. KRASWT at 11 months. On multivariate analysis, KRASMUT persisted as a negative factor for OS (HR 1.564, 95% CI 1.124−2.177, p = 0.008). KRASMUT patients with high PD-L1 expression (PD-L1high) had better OS than PD-L1highKRASWT patients (p = 0.036). In response to first-line ICB, KRASMUT patients had a significantly (p = 0.006) better outcome than KRASWT patients, with a median OS of 23 vs. 6 months. On multivariable Cox analysis, KRASMUT status was an independent prognostic factor for better OS (HR 0.349, 95% CI 0.148−0.822, p = 0.016). kRAS mutations are associated with better response to treatment with immune checkpoint blockade and worse response to platinum doublet chemotherapy as well as shorter general OS in Stage IV NSCLC.

10.
Redox Biol ; 51: 102291, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35313207

RESUMO

The transcription factor BACH1 is a potential therapeutic target for a variety of chronic conditions linked to oxidative stress and inflammation, as well as cancer metastasis. However, only a few BACH1 degraders/inhibitors have been described. BACH1 is a transcriptional repressor of heme oxygenase 1 (HMOX1), which is positively regulated by transcription factor NRF2 and is highly inducible by derivatives of the synthetic oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO). Most of the therapeutic activities of these compounds are due to their anti-inflammatory and antioxidant properties, which are widely attributed to their ability to activate NRF2. However, with such a broad range of action, these compounds have other molecular targets that have not been fully identified and could also be of importance for their therapeutic profile. Herein we identified BACH1 as a target of two CDDO-derivatives (CDDO-Me and CDDO-TFEA), but not of CDDO. While both CDDO and CDDO-derivatives activate NRF2 similarly, only CDDO-Me and CDDO-TFEA inhibit BACH1, which explains the much higher potency of these CDDO-derivatives as HMOX1 inducers compared with unmodified CDDO. Notably, we demonstrate that CDDO-Me and CDDO-TFEA inhibit BACH1 via a novel mechanism that reduces BACH1 nuclear levels while accumulating its cytoplasmic form. In an in vitro model, both CDDO-derivatives impaired lung cancer cell invasion in a BACH1-dependent and NRF2-independent manner, while CDDO was inactive. Altogether, our study identifies CDDO-Me and CDDO-TFEA as dual KEAP1/BACH1 inhibitors, providing a rationale for further therapeutic uses of these drugs.


Assuntos
Ácido Oleanólico , Triterpenos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Estresse Oxidativo , Triterpenos/farmacologia
11.
Front Oncol ; 12: 1073457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36844924

RESUMO

Objectives: Immunotherapy by blocking programmed death protein-1 (PD-1) or programmed death protein-ligand1 (PD-L1) with antibodies (PD-1 blockade) has revolutionized treatment options for patients with non-small cell lung cancer (NSCLC). However, the benefit of immunotherapy is limited to a subset of patients. This study aimed to investigate the value of combining immune and genetic variables analyzed within 3-4 weeks after the start of PD-1 blockade therapy to predict long-term clinical response. Materials and methodology: Blood collected from patients with NSCLC were analyzed for changes in the frequency and concentration of immune cells using a clinical flow cytometry assay. Next-generation sequencing (NGS) was performed on DNA extracted from archival tumor biopsies of the same patients. Patients were categorized as clinical responders or non-responders based on the 9 months' assessment after the start of therapy. Results: We report a significant increase in the post-treatment frequency of activated effector memory CD4+ and CD8+ T-cells compared with pre-treatment levels in the blood. Baseline frequencies of B cells but not NK cells, T cells, or regulatory T cells were associated with the clinical response to PD-1 blockade. NGS of tumor tissues identified pathogenic or likely pathogenic mutations in tumor protein P53, Kirsten rat sarcoma virus, Kelch-like ECH-associated protein 1, neurogenic locus notch homolog protein 1, and serine/threonine kinase 11, primarily in the responder group. Finally, multivariate analysis of combined immune and genetic factors but neither alone, could discriminate between responders and non-responders. Conclusion: Combined analyses of select immune cell subsets and genetic mutations could predict early clinical responses to immunotherapy in patients with NSCLC and after validation, can guide clinical precision medicine efforts.

12.
Antioxidants (Basel) ; 10(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34573009

RESUMO

Cellular redox homeostasis is an essential and dynamic process that ensures the balance between reducing and oxidizing reactions within cells and regulates a plethora of biological responses and events. The study of these biochemical reactions has proven difficult over time, but recent technical and methodological developments have contributed to the rapid growth of the redox field and to our understanding of its importance in biology. The aim of this short review is to give the reader an overall understanding of redox regulation in the areas of cellular signaling, development, and disease, as well as to introduce some recent discoveries in those fields.

13.
Antioxidants (Basel) ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557356

RESUMO

Dietary antioxidants and supplements are widely used to protect against cancer, even though it is now clear that antioxidants can promote tumor progression by helping cancer cells to overcome barriers of oxidative stress. Although recent studies have, in great detail, explored the role of antioxidants in lung and skin tumors driven by RAS and RAF mutations, little is known about the impact of antioxidant supplementation on other cancers, including Wnt-driven tumors originating from the gut. Here, we show that supplementation with the antioxidants N-acetylcysteine (NAC) and vitamin E promotes intestinal tumor progression in the ApcMin mouse model for familial adenomatous polyposis, a hereditary form of colorectal cancer, driven by Wnt signaling. Both antioxidants increased tumor size in early neoplasias and tumor grades in more advanced lesions without any impact on tumor initiation. Importantly, NAC treatment accelerated tumor progression at plasma concentrations comparable to those obtained in human subjects after prescription doses of the drug. These results demonstrate that antioxidants play an important role in the progression of intestinal tumors, which may have implications for patients with or predisposed to colorectal cancer.

14.
Antioxidants (Basel) ; 10(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499262

RESUMO

Cancer cells produce high levels of mitochondria-associated reactive oxygen species (ROS) that can damage macromolecules, but also promote cell signaling and proliferation. Therefore, mitochondria-targeted antioxidants have been suggested to be useful in anti-cancer therapy, but no studies have convincingly addressed this question. Here, we administered the mitochondria-targeted antioxidants MitoQ and MitoTEMPO to mice with BRAF-induced malignant melanoma and KRAS-induced lung cancer, and found that these compounds had no impact on the number of primary tumors and metastases; and did not influence mitochondrial and nuclear DNA damage levels. Moreover, MitoQ and MitoTEMPO did not influence proliferation of human melanoma and lung cancer cell lines. MitoQ and its control substance dTPP, but not MitoTEMPO, increased glycolytic rates and reduced respiration in melanoma cells; whereas only dTPP produced this effect in lung cancer cells. Our results do not support the use of mitochondria-targeted antioxidants for anti-cancer monotherapy, at least not in malignant melanoma and lung cancer.

16.
Sci Rep ; 10(1): 14156, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843651

RESUMO

Recent data suggest that the transcription factor Zfp148 represses activation of the tumor suppressor p53 in mice and that therapeutic targeting of the human orthologue ZNF148 could activate the p53 pathway without causing detrimental side effects. We have previously shown that Zfp148 deficiency promotes p53-dependent proliferation arrest of mouse embryonic fibroblasts (MEFs), but the underlying mechanism is not clear. Here, we showed that Zfp148 deficiency downregulated cell cycle genes in MEFs in a p53-dependent manner. Proliferation arrest of Zfp148-deficient cells required increased expression of ARF, a potent activator of the p53 pathway. Chromatin immunoprecipitation showed that Zfp148 bound to the ARF promoter, suggesting that Zfp148 represses ARF transcription. However, Zfp148 preferentially bound to promoters of other transcription factors, indicating that deletion of Zfp148 may have pleiotropic effects that activate ARF and p53 indirectly. In line with this, we found no evidence of genetic interaction between TP53 and ZNF148 in CRISPR and siRNA screen data from hundreds of human cancer cell lines. We conclude that Zfp148 deficiency, by increasing ARF transcription, downregulates cell cycle genes and cell proliferation in a p53-dependent manner. However, the lack of genetic interaction between ZNF148 and TP53 in human cancer cells suggests that therapeutic targeting of ZNF148 may not increase p53 activity in humans.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/fisiologia , Animais , Sistemas CRISPR-Cas , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Divisão Celular , Linhagem Celular , Imunoprecipitação da Cromatina , Cisplatino/toxicidade , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/fisiologia , Regulação para Baixo , Fatores de Transcrição E2F/fisiologia , Etoposídeo/toxicidade , Fibroblastos , Ontologia Genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/fisiologia
17.
Cell Metab ; 31(2): 339-350.e4, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31813821

RESUMO

Rewiring of metabolic pathways is a hallmark of tumorigenesis as cancer cells acquire novel nutrient dependencies to support oncogenic growth. A major genetic subtype of lung adenocarcinoma with KEAP1/NRF2 mutations, which activates the endogenous oxidative stress response, undergoes significant metabolic rewiring to support enhanced antioxidant production. We demonstrate that cancers with high antioxidant capacity exhibit a general dependency on exogenous non-essential amino acids (NEAAs) that is driven by the Nrf2-dependent secretion of glutamate through system xc- (XCT), which limits intracellular glutamate pools that are required for NEAA synthesis. This dependency can be therapeutically targeted by dietary restriction or enzymatic depletion of individual NEAAs. Importantly, limiting endogenous glutamate levels by glutaminase inhibition can sensitize tumors without alterations in the Keap1/Nrf2 pathway to dietary restriction of NEAAs. Our findings identify a metabolic strategy to therapeutically target cancers with genetic or pharmacologic activation of the Nrf2 antioxidant response pathway by restricting exogenous sources of NEAAs.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Ácido Glutâmico/metabolismo , Glutaminase/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
18.
Nat Commun ; 10(1): 3975, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484924

RESUMO

Rho family proteins are prenylated by geranylgeranyltransferase type I (GGTase-I), which normally target proteins to membranes for GTP-loading. However, conditional deletion of GGTase-I in mouse macrophages increases GTP-loading of Rho proteins, leading to enhanced inflammatory responses and severe rheumatoid arthritis. Here we show that heterozygous deletion of the Rho family gene Rac1, but not Rhoa and Cdc42, reverses inflammation and arthritis in GGTase-I-deficient mice. Non-prenylated Rac1 has a high affinity for the adaptor protein Ras GTPase-activating-like protein 1 (Iqgap1), which facilitates both GTP exchange and ubiquitination-mediated degradation of Rac1. Consistently, inactivating Iqgap1 normalizes Rac1 GTP-loading, and reduces inflammation and arthritis in GGTase-I-deficient mice, as well as prevents statins from increasing Rac1 GTP-loading and cytokine production in macrophages. We conclude that blocking prenylation stimulates Rac1 effector interactions and unleashes proinflammatory signaling. Our results thus suggest that prenylation normally restrains innate immune responses by preventing Rac1 effector interactions.


Assuntos
Imunidade Inata/genética , Prenilação de Proteína , Transdução de Sinais/genética , Proteínas rac1 de Ligação ao GTP/genética , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Citocinas/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ligação Proteica , Células RAW 264.7 , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
20.
Cell ; 178(2): 316-329.e18, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257023

RESUMO

Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias Pulmonares/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linhagem Celular Tumoral , Movimento Celular , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Estimativa de Kaplan-Meier , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA