Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4932, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188875

RESUMO

Acoustic manipulation is an emerging non-invasive method enabling precise spatial control of cells in their native environment. Applying this method for organizing neurons is invaluable for neural tissue engineering applications. Here, we used surface and bulk standing acoustic waves for large-scale patterning of Dorsal Root Ganglia neurons and PC12 cells forming neuronal cluster networks, organized biomimetically. We showed that by changing parameters such as voltage intensity or cell concentration we were able to affect cluster properties. We examined the effects of acoustic arrangement on cells atop 3D hydrogels for up to 6 days and showed that assembled cells spontaneously grew branches in a directed manner towards adjacent clusters, infiltrating the matrix. These findings have great relevance for tissue engineering applications as well as for mimicking architectures and properties of native tissues.


Assuntos
Neurônios/fisiologia , Som , Animais , Técnicas de Cultura de Células , Células Cultivadas , Fenômenos Eletrofisiológicos , Gânglios Espinais/citologia , Neuritos/fisiologia , Células PC12 , Ratos , Engenharia Tecidual
2.
J Colloid Interface Sci ; 536: 701-709, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30408690

RESUMO

Directed-assembly by standing surface acoustic waves (SSAWs) only requires an acoustic contrast between particles and their surrounding medium. It is therefore highly attractive as this requirement is fulfilled by almost all dispersed systems. Previous studies utilizing SSAWs demonstrated mainly reversible microstructure arrangements from nanoparticles. The surface chemistry of colloids dramatically influences their tendency to aggregate and sinter; therefore, it should be possible to form permanent microstructures with intimate contact between nanoparticles by controlling this property. Dispersed silver nanoparticles in a microfluidic channel were exposed to SSAWs and reversibly accumulated at the pressure nodes. We show that addition of chloride ions that remove the polyacrylic capping of the nanoparticles trigger their sintering and the formation of stable conducting silver microstructures. Moreover, if the destabilizing ions are added prior to nanoparticle assembly while continuously streaming the dispersion through the acoustic aperture, the induced aggregation leads to formation of significantly thinner microstructures, which are (for the first time) unlimited in length by the acoustic apparatus. This new approach overcomes the discrepancy between the need for organic dispersants to prevent unwanted aggregation in the dispersion, and the end product's requirement for intimate contact between the colloidal particles.

3.
Langmuir ; 30(45): 13596-605, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25338192

RESUMO

A distinct odd-even effect on the electrical properties, induced by monolayers of alkyl-phenyl molecules directly bound to Si(111), is reported. Monomers of H2C═CH-(CH2)n-phenyl, with n = 2-5, were adsorbed onto Si-H and formed high-quality monolayers with a binding density of 50-60% Si(111) surface atoms. Molecular dynamics simulations suggest that the binding proximity is close enough to allow efficient π-π interactions and therefore distinctly different packing and ring orientations for monomers with odd or even numbers of methylenes in their alkyl spacers. The odd-even alternation in molecular tilt was experimentally confirmed by contact angle, ellipsometry, FT-IR, and XPS with a close quantitative match to the simulation results. The orientations of both the ring plane and the long axis of the alkyl spacer are more perpendicular to the substrate plane for molecules with an even number of methylenes than for those with an odd number of methylenes. Interestingly, those with an even number conduct better than the effectively thinner monolayers of the molecules with the odd number of methylenes. We attribute this to a change in the orientation of the electron density on the aromatic rings with respect to the shortest tunneling path, which increases the barrier for electron transport through the odd monolayers. The high sensitivity of molecular charge transport to the orientation of an aromatic moiety might be relevant to better control over the electronic properties of interfaces in organic electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA