Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38813867

RESUMO

AIM: The aim of this study was to systematically review the current literature on the use of exergames as an exercise-based cardiac rehabilitation intervention for patients with heart failure. METHODS: PubMed, SCOPUS and CINAHL Plus databases were searched from January 2007 to August 2023. Studies considered eligible for inclusion had to report one or more of the following outcomes: functional capacity (e.g. VO2 max), quality of life, mortality, hospital admissions, physical activity level, and engagement/satisfaction of the intervention. Only studies reported in English were included. Two reviewers independently assessed studies for their eligibility. RESULTS: Two studies (in four reports) were included. Included studies reported only data on functional capacity (6-min walking test) and on physical activity level (accelerometers). Due to the low number of included studies, no meta-analysis was performed, and results were discussed narratively. CONCLUSION: Exergames may potentially be a promising tool for exercise-based cardiac rehabilitation in patients with heart failure; however, the low number of included studies was insufficient to drawn proper conclusions. Benefits of exergames compared with traditional interventions could be the possibility of it being delivered at home, reducing some of the barriers that patients with heart failure must face. Further studies are required to assess the efficacy of exergame interventions in patients with heart failure, and to define proper guidelines to deliver exergame interventions in this population.This systematic review was registered on PROSPERO (CRD42023446948).

2.
Bioengineering (Basel) ; 11(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671819

RESUMO

Action observation and motor imagery (AOMI) are commonly delivered through a laptop screen. Immersive virtual reality (VR) may enhance the observer's embodiment, a factor that may boost AOMI effects. The study aimed to investigate the effects on manual dexterity of AOMI delivered through immersive VR compared to AOMI administered through a laptop. To evaluate whether VR can enhance the effects of AOMI, forty-five young volunteers were enrolled and randomly assigned to the VR-AOMI group, who underwent AOMI through immersive VR, the AOMI group, who underwent AOMI through a laptop screen, or the control group, who observed landscape video clips. All participants underwent a 5-day treatment, consisting of 12 min per day. We investigated between and within-group differences after treatments relative to functional manual dexterity tasks using the Purdue Pegboard Test (PPT). This test included right hand (R), left hand (L), both hands (B), R + L + B, and assembly tasks. Additionally, we analyzed kinematics parameters including total and sub-phase duration, peak and mean velocity, and normalized jerk, during the Nine-Hole Peg Test to examine whether changes in functional scores may also occur through specific kinematic patterns. Participants were assessed at baseline (T0), after the first training session (T1), and at the end of training (T2). A significant time by group interaction and time effects were found for PPT, where both VR-AOMI and AOMI groups improved at the end of training. Larger PPT-L task improvements were found in the VR-AOMI group (d: 0.84, CI95: 0.09-1.58) compared to the AOMI group from T0 to T1. Immersive VR used for the delivery of AOMI speeded up hand dexterity improvements.

3.
Sensors (Basel) ; 23(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005650

RESUMO

In recent years, wearable systems based on inertial sensors opened new perspectives for functional motor assessment with respect to the gold standard motion capture systems. The aim of this study was to validate an experimental set-up based on 17 body-worn inertial sensors (Awinda, Xsens, The Netherlands), addressing specific body segments with respect to the state-of-the art system (VICON, Oxford Metrics Ltd., Oxford, UK) to assess upper limb kinematics in obese, with respect to healthy subjects. Twenty-three obese and thirty healthy weight individuals were simultaneously acquainted with the two systems across a set of three tasks for upper limbs (i.e., frontal arm rise, lateral arm rise, and reaching). Root Mean Square error (RMSE) was computed to quantify the differences between the measurements provided by the systems in terms of range of motion (ROM), whilst their agreement was assessed via Pearson's correlation coefficient (PCC) and Bland-Altman (BA) plots. In addition, the signal waveforms were compared via one-dimensional statistical parametrical mapping (SPM) based on a paired t-test and a two-way ANOVA was applied on ROMs. The overall results partially confirmed the correlation and the agreement between the two systems, reporting only a moderate correlation for shoulder principal rotation angle in each task (r~0.40) and for elbow/flexion extension in obese subjects (r = 0.66), whilst no correlation was found for most non-principal rotation angles (r < 0.40). Across the performed tasks, an average RMSE of 34° and 26° was reported in obese and healthy controls, respectively. At the current state, the presence of bias limits the applicability of the inertial-based system in clinics; further research is intended in this context.


Assuntos
Ombro , Extremidade Superior , Humanos , Cotovelo , Obesidade , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Rotação
4.
Sci Rep ; 13(1): 9107, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277395

RESUMO

Action Observation Training (AOT) promotes the acquisition of motor abilities. However, while the cortical modulations associated with the AOT efficacy are well known, few studies investigated the AOT peripheral neural correlates and whether their dynamics move towards the observed model during the training. We administered seventy-two participants (randomized into AOT and Control groups) with training for learning to grasp marbles with chopsticks. Execution practice was preceded by an observation session, in which AOT participants observed an expert performing the task, whereas controls observed landscape videos. Behavioral indices were measured, and three hand muscles' electromyographic (EMG) activity was recorded and compared with the expert. Behaviorally, both groups improved during the training, with AOT outperforming controls. The EMG trainee-model similarity also increased during the training, but only for the AOT group. When combining behavioral and EMG similarity findings, no global relationship emerged; however, behavioral improvements were "locally" predicted by the similarity gain in muscles and action phases more related to the specific motor act. These findings reveal that AOT plays a magnetic role in motor learning, attracting the trainee's motor pattern toward the observed model and paving the way for developing online monitoring tools and neurofeedback protocols.


Assuntos
Mãos , Aprendizagem , Humanos , Membro Anterior , Mãos/fisiologia , Gravação de Videoteipe
5.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991886

RESUMO

Obesity has a critical impact on musculoskeletal systems, and excessive weight directly affects the ability of subjects to realize movements. It is important to monitor the activities of obese subjects, their functional limitations, and the overall risks related to specific motor tasks. From this perspective, this systematic review identified and summarized the main technologies specifically used to acquire and quantify movements in scientific studies involving obese subjects. The search for articles was carried out on electronic databases, i.e., PubMed, Scopus, and Web of Science. We included observational studies performed on adult obese subjects whenever reporting quantitative information concerning their movement. The articles must have been written in English, published after 2010, and concerned subjects who were primarily diagnosed with obesity, thus excluding confounding diseases. Marker-based optoelectronic stereophotogrammetric systems resulted to be the most adopted solution for movement analysis focused on obesity; indeed, wearable technologies based on magneto-inertial measurement units (MIMUs) were recently adopted for analyzing obese subjects. Further, these systems are usually integrated with force platforms, so as to have information about the ground reaction forces. However, few studies specifically reported the reliability and limitations of these approaches due to soft tissue artifacts and crosstalk, which turned out to be the most relevant problems to deal with in this context. In this perspective, in spite of their inherent limitations, medical imaging techniques-such as Magnetic Resonance Imaging (MRI) and biplane radiography-should be used to improve the accuracy of biomechanical evaluations in obese people, and to systematically validate less-invasive approaches.


Assuntos
Obesidade , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Reprodutibilidade dos Testes , Movimento , Imageamento por Ressonância Magnética
6.
Front Psychol ; 14: 1122236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935992

RESUMO

In sports, understanding others' actions represents a fundamental skill that allows players to predict the outcome of teammates' and opponents' actions and counteract them properly. While it is well known that motor expertise sets better premises for predicting the result of an observed sports action, it remains untested whether this principle applies to a team where players cover different positions that imply different motor repertoires. To test this hypothesis, we selected rugby as a paradigmatic example in which only one or two players out of 22 train and perform placed kicks. We administered a placed kick outcome prediction task to three groups of participants, namely, rugby kickers, rugby non-kickers, and controls, thus spanning over different combinations of motor expertise and visual experience. Kickers outperformed both their non-kicking teammates and controls in overall prediction accuracy. We documented how the viewpoint of observation, the expertise of the observed kicker, and the position of the kick on the court influenced the prediction performance across the three groups. Finally, we revealed that within rugby players, the degree of motor expertise (but not the visual experience) causally affects accuracy, and such a result stands even after accounting for the level of visual experience. These findings extend the role of motor expertise in decoding and predicting others' behaviors to sports teammates, among which every member is equipped with a position-specific motor repertoire, advocating for new motor training procedures combining the gestures to-be-performed with those to-be-faced.

7.
Neuroimage ; 266: 119825, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543266

RESUMO

The observation of other's actions represents an essential element for the acquisition of motor skills. While action observation is known to induce changes in the excitability of the motor cortices, whether such modulations may explain the amount of motor improvement driven by action observation training (AOT) remains to be addressed. Using transcranial magnetic stimulation (TMS), we first assessed in 41 volunteers the effect of action observation on corticospinal excitability, intracortical inhibition, and transcallosal inhibition. Subsequently, half of the participants (AOT-group) were asked to observe and then execute a right-hand dexterity task, while the controls had to observe a no-action video before practicing the same task. AOT participants showed greater performance improvement relative to controls. More importantly, the amount of improvement in the AOT group was predicted by the amplitude of corticospinal modulation during action observation and, even more, by the amount of intracortical inhibition induced by action observation. These relations were specific for the AOT group, while the same patterns were not found in controls. Taken together, our findings demonstrate that the efficacy of AOT in promoting motor learning is rooted in the capacity of action observation to modulate the trainee's motor system excitability, especially its intracortical inhibition. Our study not only enriches the picture of the neurophysiological effects induced by action observation onto the observer's motor excitability, but linking them to the efficacy of AOT, it also paves the way for the development of models predicting the outcome of training procedures based on the observation of other's actions.


Assuntos
Córtex Motor , Destreza Motora , Humanos , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Mãos/fisiologia , Tratos Piramidais/fisiologia , Músculo Esquelético/fisiologia
8.
Front Hum Neurosci ; 16: 793849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399362

RESUMO

Motor learning can be defined as a process that leads to relatively permanent changes in motor behavior through repeated interactions with the environment. Different strategies can be adopted to achieve motor learning: movements can be overtly practiced leading to an amelioration of motor performance; alternatively, covert strategies (e.g., action observation) can promote neuroplastic changes in the motor system even in the absence of real movement execution. However, whether a training regularly alternating action observation and execution (i.e., Action Observation Training, AOT) may surpass the pure motor practice (MP) and observational learning (OL) remains to be established. To address this issue, we enrolled 54 subjects requiring them to learn tying nautical knots via one out of three types of training (AOT, MP, OL) with the scope to investigate which element mostly contributes to motor learning. We evaluated the overall improvement of each group, along with the predictive role that neuropsychological indexes exert on each treatment outcome. The AOT group exhibited the highest performance improvement (42%), indicating that the regular alternation between observation and execution biases participants toward a better performance. The reiteration of this sequence provides an incremental, adjunct value that super-adds onto the efficacy of motor practice or observational learning in isolation (42% > 25% + 10%, i.e., OL + MP). These findings extend the use of the AOT from clinical and rehabilitative contexts to daily routines requiring the learning and perfectioning of new motor skills such as sports training, music, and occupational activities requiring fine motor control.

9.
J Neurol ; 269(2): 627-638, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33449202

RESUMO

Ensuring proper dosage of treatment and repetition over time is a major challenge in neurorehabilitation. However, a requirement of physical distancing to date compromises their achievement. While mostly associated to COVID-19, physical distancing is not only required in a pandemic scenario, but also advised for several clinical conditions (e.g. immunocompromised individuals) or forced for specific social contexts (e.g. people living in remote areas worldwide). All these contexts advocate for the implementation of alternative healthcare models. The objective of this perspective is to highlight the benefits of remote administration of rehabilitative treatment, namely telerehabilitation, in counteracting physical distancing barriers in neurorehabilitation. Sustaining boosters of treatment outcome, such as compliance, sustainability, as well as motivation, telerehabilitation may adapt to multiple neurological conditions, with the further advantage of a high potential for individualization to patient's or pathology's specificities. The effectiveness of telerehabilitation can be potentiated by several technologies available to date: virtual reality can recreate realistic environments in which patients may bodily operate, wearable sensors allow to quantitatively monitor the patient's performance, and signal processing may contribute to the prediction of long-term dynamics of patient recovery. Telerehabilitation might spark its advantages far beyond the mere limitation of physical distancing effects, mitigating criticalities of daily neurorehabilitative practice, and thus paving the way to the envision of mixed models of care, where hospital-based procedures are complementarily integrated with telerehabilitative ones.


Assuntos
COVID-19 , Telerreabilitação , Realidade Virtual , Humanos , Distanciamento Físico , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782480

RESUMO

There is rich clinical evidence that observing normally executed actions promotes the recovery of the corresponding action execution in patients with motor deficits. In this study, we assessed the ability of action observation to prevent the decay of healthy individuals' motor abilities following upper-limb immobilization. To this end, upper-limb kinematics was recorded in healthy participants while they performed three reach-to-grasp movements before immobilization and the same movements after 16 h of immobilization. The participants were subdivided into two groups; the experimental group observed, during the immobilization, the same reach-to-grasp movements they had performed before immobilization, whereas the control group observed natural scenarios. After bandage removal, motor impairment in performing reach-to-grasp movements was milder in the experimental group. These findings support the hypothesis that action observation, via the mirror mechanism, plays a protective role against the decline of motor performance induced by limb nonuse. From this perspective, action observation therapy is a promising tool for anticipating rehabilitation onset in clinical conditions involving limb nonuse, thus reducing the burden of further rehabilitation.


Assuntos
Força da Mão/fisiologia , Imobilização/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Observação , Reabilitação , Extremidade Superior , Adulto Jovem
11.
Sci Rep ; 10(1): 2605, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054915

RESUMO

It is well known that the kinematics of an action is modulated by the underlying motor intention. In turn, kinematics serves as a cue also during action observation, providing hints about the intention of the observed action. However, an open question is whether decoding others' intentions on the basis of their kinematics depends solely on how much the kinematics varies across different actions, or rather it is also influenced by its similarity with the observer motor repertoire. The execution of reach-to-grasp and place actions, differing for target size and context, was recorded in terms of upper-limb kinematics in 21 volunteers and in an actor. Volunteers had later to observe the sole reach-to-grasp phase of the actor's actions, and predict the underlying intention. The potential benefit of the kinematic actor-participant similarity for recognition accuracy was evaluated. In execution, both target size and context modulated specific kinematic parameters. More importantly, although participants performed above chance in intention recognition, the similarity of motor patterns positively correlated with recognition accuracy. Overall, these data indicate that kinematic similarity exerts a facilitative role in intention recognition, providing further support to the view of action intention recognition as a visuo-motor process grounded in motor resonance.


Assuntos
Intenção , Movimento , Adulto , Fenômenos Biomecânicos , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Reconhecimento Psicológico , Adulto Jovem
12.
Int Biomech ; 6(1): 19-33, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34042002

RESUMO

The intra-subject, the inter-operator, and the inter-laboratory variabilities are the main sources of uncertainties in gait analysis, and their effects have been partially described in the literature for adult populations. This study aimed to extend the repeatability and reproducibility analysis to a pediatric population, accounting for the effects induced by the intra-subject variations, the measurement setup, the marker set configuration, and the involved operators in placing markers and EMG electrodes. We evaluated kinematic, kinetic and EMG outputs collected from gait analyses performed on two healthy children in two laboratories, by two operators, and with two marker placement protocols. The two involved centers previously defined a common acquisition procedure based on their routine pipelines. The similarity of kinematic, kinetic, and EMG curves were evaluated by means of the coefficients of the Linear Fit Method, and the Mean Absolute Variability with and without the offset among curves. The inter-operator variability was found to be the main contribution to the overall reproducibility of kinematic and kinetic gait data. On the contrary, the main contribution to the variability of the EMG signals was the intra-subject repeatability that is due to the physiological stride to stride muscle activation variability.

13.
Sensors (Basel) ; 15(9): 24514-29, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26404309

RESUMO

Gait-phase recognition is a necessary functionality to drive robotic rehabilitation devices for lower limbs. Hidden Markov Models (HMMs) represent a viable solution, but they need subject-specific training, making data processing very time-consuming. Here, we validated an inter-subject procedure to avoid the intra-subject one in two, four and six gait-phase models in pediatric subjects. The inter-subject procedure consists in the identification of a standardized parameter set to adapt the model to measurements. We tested the inter-subject procedure both on scalar and distributed classifiers. Ten healthy children and ten hemiplegic children, each equipped with two Inertial Measurement Units placed on shank and foot, were recruited. The sagittal component of angular velocity was recorded by gyroscopes while subjects performed four walking trials on a treadmill. The goodness of classifiers was evaluated with the Receiver Operating Characteristic. The results provided a goodness from good to optimum for all examined classifiers (0 < G < 0.6), with the best performance for the distributed classifier in two-phase recognition (G = 0.02). Differences were found among gait partitioning models, while no differences were found between training procedures with the exception of the shank classifier. Our results raise the possibility of avoiding subject-specific training in HMM for gait-phase recognition and its implementation to control exoskeletons for the pediatric population.


Assuntos
Paralisia Cerebral/fisiopatologia , Marcha/fisiologia , Cadeias de Markov , Criança , Humanos , Monitorização Ambulatorial/instrumentação , Reprodutibilidade dos Testes , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA