Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766214

RESUMO

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons which regulate responses to a variety of interoceptive and cutaneous sensory signals. The lateral PB subpopulation expressing the Calca gene which produces the neuropeptide calcitonin gene-related peptide (CGRP) relays signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet the afferents to these neurons are only partially understood. We mapped the afferent projections to the lateral part of the PB in mice using conventional cholera toxin B subunit (CTb) retrograde tracing, and then used conditional rabies virus retrograde tracing to map monosynaptic inputs specifically targeting the PB Calca /CGRP neurons. Using vesicular GABA (vGAT) and glutamate (vGLUT2) transporter reporter mice, we found that lateral PB neurons receive GABAergic afferents from regions such as the lateral part of the central nucleus of the amygdala, lateral dorsal subnucleus of the bed nucleus of the stria terminalis, substantia innominata, and the ventrolateral periaqueductal gray. Additionally, they receive glutamatergic afferents from the infralimbic and insular cortex, paraventricular nucleus, parasubthalamic nucleus, trigeminal complex, medullary reticular nucleus, and nucleus of the solitary tract. Using anterograde tracing and confocal microscopy, we then identified close axonal appositions between these afferents and PB Calca /CGRP neurons. Finally, we used channelrhodopsin-assisted circuit mapping to test whether some of these inputs directly synapse upon the PB Calca /CGRP neurons. These findings provide a comprehensive neuroanatomical framework for understanding the afferent projections regulating the PB Calca /CGRP neurons.

2.
Sci Transl Med ; 16(743): eadg3036, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630850

RESUMO

Spontaneous pain, a major complaint of patients with neuropathic pain, has eluded study because there is no reliable marker in either preclinical models or clinical studies. Here, we performed a comprehensive electroencephalogram/electromyogram analysis of sleep in several mouse models of chronic pain: neuropathic (spared nerve injury and chronic constriction injury), inflammatory (Freund's complete adjuvant and carrageenan, plantar incision) and chemical pain (capsaicin). We find that peripheral axonal injury drives fragmentation of sleep by increasing brief arousals from non-rapid eye movement sleep (NREMS) without changing total sleep amount. In contrast to neuropathic pain, inflammatory or chemical pain did not increase brief arousals. NREMS fragmentation was reduced by the analgesics gabapentin and carbamazepine, and it resolved when pain sensitivity returned to normal in a transient neuropathic pain model (sciatic nerve crush). Genetic silencing of peripheral sensory neurons or ablation of CGRP+ neurons in the parabrachial nucleus prevented sleep fragmentation, whereas pharmacological blockade of skin sensory fibers was ineffective, indicating that the neural activity driving the arousals originates ectopically in primary nociceptor neurons and is relayed through the lateral parabrachial nucleus. These findings identify NREMS fragmentation by brief arousals as an effective proxy to measure spontaneous neuropathic pain in mice.


Assuntos
Neuralgia , Nociceptores , Humanos , Ratos , Camundongos , Animais , Movimentos Oculares , Hiperalgesia/complicações , Ratos Sprague-Dawley , Sono , Modelos Animais de Doenças
3.
Sleep ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644625

RESUMO

STUDY OBJECTIVES: Post-hoc analysis to evaluate the effect of daridorexant on sleep architecture in people with insomnia, focusing on features associated with hyperarousal. METHODS: We studied sleep architecture in adults with chronic insomnia disorder from two randomized Phase 3 clinical studies (Clinicaltrials.gov: NCT03545191 and NCT03575104) investigating 3 months of daridorexant treatment (placebo, daridorexant 25 mg, daridorexant 50 mg). We analyzed sleep-wake transition probabilities, EEG spectra and sleep spindle properties including density, dispersion, and slow oscillation phase coupling. The Wake EEG Similarity Index (WESI) was determined using a machine learning algorithm analyzing the spectral profile of the EEG. RESULTS: At Month 3, daridorexant 50 mg decreased Wake-to-Wake transition probabilities (P<0.05) and increased the probability of transitions from Wake-to-N1 (P<0.05), N2 (P<0.05), and REM sleep (P<0.05), as well as from N1-to-N2 (P<0.05) compared to baseline and placebo. Daridorexant 50 mg decreased relative beta power during Wake (P=0.011) and N1 (P<0.001) compared to baseline and placebo. During Wake, relative alpha power decreased (P<0.001) and relative delta power increased (P<0.001) compared to placebo. Daridorexant did not alter EEG spectra bands in N2, N3, and REM stages or in sleep spindle activity. Daridorexant decreased the WESI score during Wake compared to baseline (P=0.004). Effects with 50 mg were consistent between Month 1 and Month 3 and less pronounced with 25 mg. CONCLUSION: Daridorexant reduced EEG features associated with hyperarousal as indicated by reduced Wake-to-Wake transition probabilities and enhanced spectral features associated with drowsiness and sleep during Wake and N1.

4.
Sleep ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788645
5.
J Gen Intern Med ; 38(16): 3621-3627, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740167

RESUMO

Harriet Tubman, a hero of the abolitionist movement and early civil rights advocate, suffered a head injury in childhood and subsequently developed sleep attacks associated with visions that were extensively documented in historical accounts. Her contemporaries perceived these visions together with unpredictable and unavoidable urges to sleep as manifestations of her deep faith, rather than as symptoms of an illness. While religious perspectives remain crucial to understanding Tubman's sleep-related experiences, some may consider them insufficient in view of modern medical advances. We propose the parallel explanation that her sleep attacks, usually attributed to temporal lobe epilepsy, actually represent a hypersomnia that is most consistent with the modern diagnosis of post-traumatic narcolepsy. Using historical analysis as well as current understandings of sleep medicine, we aim to shed light on this under-recognized aspect of Tubman's life. In addition, this case study allows us to review the potential long-term effects of severe traumatic brain injuries; consider a differential for excessive daytime sleepiness and hypnagogic hallucinations; and familiarize readers with the pathophysiology, diagnosis, and treatment of narcolepsy. Whether her symptoms are viewed through the lens of the past or measured against current biomedical standards, Tubman demonstrated an inspiring ability to persevere despite intrusive sleep episodes and to realize her dreams for the betterment of others.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Transtornos do Sono-Vigília , Feminino , Humanos , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Narcolepsia/diagnóstico , Sono/fisiologia , Transtornos do Sono-Vigília/diagnóstico
6.
N Engl J Med ; 389(4): 309-321, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37494485

RESUMO

BACKGROUND: Narcolepsy type 1 is caused by severe loss or lack of brain orexin neuropeptides. METHODS: We conducted a phase 2, randomized, placebo-controlled trial of TAK-994, an oral orexin receptor 2-selective agonist, in patients with narcolepsy type 1. Patients with confirmed narcolepsy type 1 according to clinical criteria were randomly assigned to receive twice-daily oral TAK-994 (30 mg, 90 mg, or 180 mg) or placebo. The primary end point was the mean change from baseline to week 8 in average sleep latency (the time it takes to fall asleep) on the Maintenance of Wakefulness Test (range, 0 to 40 minutes; normal ability to stay awake, ≥20 minutes). Secondary end points included the change in the Epworth Sleepiness Scale (ESS) score (range, 0 to 24, with higher scores indicating greater daytime sleepiness; normal, <10) and the weekly cataplexy rate. RESULTS: Of the 73 patients, 17 received TAK-994 at a dose of 30 mg twice daily, 20 received 90 mg twice daily, 19 received 180 mg twice daily, and 17 received placebo. The phase 2 trial and an extension trial were terminated early owing to hepatic adverse events. Primary end-point data were available for 41 patients (56%); the main reason for missing data was early trial termination. Least-squares mean changes to week 8 in average sleep latency on the MWT were 23.9 minutes in the 30-mg group, 27.4 minutes in the 90-mg group, 32.6 minutes in the 180-mg group, and -2.5 minutes in the placebo group (difference vs. placebo, 26.4 minutes in the 30-mg group, 29.9 minutes in the 90-mg group, and 35.0 minutes the 180-mg group; P<0.001 for all comparisons). Least-squares mean changes to week 8 in the ESS score were -12.2 in the 30-mg group, -13.5 in the 90-mg group, -15.1 in the 180-mg group, and -2.1 in the placebo group (difference vs. placebo, -10.1 in the 30-mg group, -11.4 in the 90-mg group, and -13.0 in the 180-mg group). Weekly incidences of cataplexy at week 8 were 0.27 in the 30-mg group, 1.14 in the 90-mg group, 0.88 in the 180-mg group, and 5.83 in the placebo group (rate ratio vs. placebo, 0.05 in the 30-mg group, 0.20 in the 90-mg group, and 0.15 in the 180-mg group). A total of 44 of 56 patients (79%) receiving TAK-994 had adverse events, most commonly urinary urgency or frequency. Clinically important elevations in liver-enzyme levels occurred in 5 patients, and drug-induced liver injury meeting Hy's law criteria occurred in 3 patients. CONCLUSIONS: In a phase 2 trial involving patients with narcolepsy type 1, an orexin receptor 2 agonist resulted in greater improvements on measures of sleepiness and cataplexy than placebo over a period of 8 weeks but was associated with hepatotoxic effects. (Funded by Takeda Development Center Americas; TAK-994-1501 and TAK-994-1504 ClinicalTrials.gov numbers, NCT04096560 and NCT04820842.).


Assuntos
Narcolepsia , Receptores de Orexina , Orexinas , Humanos , Cataplexia/complicações , Cataplexia/tratamento farmacológico , Cataplexia/epidemiologia , Método Duplo-Cego , Narcolepsia/tratamento farmacológico , Narcolepsia/complicações , Narcolepsia/epidemiologia , Receptores de Orexina/agonistas , Receptores de Orexina/uso terapêutico , Sonolência/efeitos dos fármacos , Resultado do Tratamento , Orexinas/análise , Orexinas/deficiência , Orexinas/farmacologia , Química Encefálica/efeitos dos fármacos , Administração Oral , Doença Hepática Induzida por Substâncias e Drogas/etiologia
7.
CNS Drugs ; 37(7): 639-653, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37477771

RESUMO

BACKGROUND: Daridorexant, a dual orexin receptor antagonist approved in early 2022, reduces wake after sleep onset without reducing the number of awakenings in patients with insomnia. The objective of this post hoc analysis was to explore the effect of daridorexant on the number, duration, and distribution of night-time wake bouts, and their correlation with daytime functioning. METHODS: Adults with insomnia disorder were randomized 1:1:1:1:1:1 to placebo, zolpidem 10 mg, or daridorexant 5, 10, 25, or 50 mg in a phase II dose-finding study, and 1:1:1 to placebo or daridorexant 25 or 50 mg in a pivotal phase III study. We analyzed polysomnography data for daridorexant 25 and 50 mg, zolpidem 10 mg, and placebo groups. Polysomnography was conducted at baseline, then on Days 1/2, 15/16, and 28/29 in the phase II study, and Months 1 and 3 in the phase III study. The number, duration, and distribution of wake bouts (≥ 0.5 min) were assessed. RESULTS: Data from 1111 patients (phase II study: daridorexant 50 mg [n = 61], zolpidem 10 mg [n = 60], placebo [n = 60]; phase III study: daridorexant 25 mg [n = 310], daridorexant 50 mg [n = 310], placebo [n = 310]) were analyzed. Long wake bouts were defined as > 6 min. Compared with placebo, daridorexant 50 mg reduced overall wake time (p < 0.05; all time points, both studies), the odds of experiencing long wake bouts (p < 0.001; Months 1 and 3, phase III study), and the cumulative duration of long wake bouts (p < 0.01; all time points, both studies). Reductions in long wake bouts were sustained through the second half of the night and correlated with improvements in daytime functioning. An increase in the cumulative duration of short wake bouts was observed with daridorexant 50 mg (p < 0.01 vs placebo, Months 1 and 3, phase III study); this was uncorrelated with daytime functioning. CONCLUSION: Daridorexant reduced the number and duration of longer wake bouts throughout the night compared with placebo, corresponding with improved daytime functioning. CLINICAL TRIALS: Clinicaltrials.gov NCT02839200 (registered July 20, 2016), NCT03545191 (registered June 4, 2018).


Assuntos
Distúrbios do Início e da Manutenção do Sono , Adulto , Humanos , Zolpidem , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Piridinas/uso terapêutico , Método Duplo-Cego
8.
Sleep Med Rev ; 66: 101709, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36401976

RESUMO

Idiopathic hypersomnia is a sleep disorder of neurologic origin characterized by excessive daytime sleepiness, with sleep inertia, long, unrefreshing naps, and prolonged nighttime sleep being key symptoms in many patients. Idiopathic hypersomnia is described in the International Classification of Sleep Disorders, 3rd Edition as a central disorder of hypersomnolence with distinct clinical features and diagnostic criteria; however, confirming the diagnosis of idiopathic hypersomnia is often challenging. Diagnosis of idiopathic hypersomnia is based on objective sleep testing and the presence of associated clinical features but may be difficult for clinicians to recognize and correctly diagnose because of its low prevalence, clinical heterogeneity, and symptoms, which are similar to those of other sleep disorders. The testing required for diagnosis of idiopathic hypersomnia also presents logistical barriers, and reliability of objective sleep measures is suboptimal. The pathophysiology of idiopathic hypersomnia remains unknown. In this review, clinical considerations related to the pathogenesis, diagnosis, and management of idiopathic hypersomnia will be discussed, including perspectives from the European Union and United States.


Assuntos
Hipersonia Idiopática , Humanos , Hipersonia Idiopática/diagnóstico , Reprodutibilidade dos Testes
9.
Sleep ; 45(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36170177

RESUMO

STUDY OBJECTIVES: The pedunculopontine tegmental (PPT) nucleus is implicated in many brain functions, ranging from sleep/wake control and locomotion, to reward mechanisms and learning. The PPT contains cholinergic, GABAergic, and glutamatergic neurons with extensive ascending and descending axonal projections. Glutamatergic PPT (PPTvGlut2) neurons are thought to promote wakefulness, but the mechanisms through which this occurs are unknown. In addition, some researchers propose that PPTvGlut2 neurons promote locomotion, yet even though the PPT is a target for deep brain stimulation in Parkinson's disease, the role of the PPT in locomotion is debated. We hypothesized that PPTvGluT2 neurons drive arousal and specific waking behaviors via certain projections and modulate locomotion via others. METHODS: We mapped the axonal projections of PPTvGlut2 neurons using conditional anterograde tracing and then photostimulated PPTvGlut2 soma or their axon terminal fields across sleep/wake states and analyzed sleep/wake behavior, muscle activity, and locomotion in transgenic mice. RESULTS: We found that stimulation of PPTvGlut2 soma and their axon terminals rapidly triggered arousals from non-rapid eye movement sleep, especially with activation of terminals in the basal forebrain (BF) and lateral hypothalamus (LH). With photoactivation of PPTvGlut2 terminals in the BF and LH, this wakefulness was accompanied by locomotion and other active behaviors, but stimulation of PPTvGlut2 soma and terminals in the substantia nigra triggered only quiet wakefulness without locomotion. CONCLUSIONS: These findings demonstrate the importance of the PPTvGluT2 neurons in driving various aspects of arousal and show that heterogeneous brain nuclei, such as the PPT, can promote a variety of behaviors via distinct axonal projections.


Assuntos
Prosencéfalo Basal , Vigília , Animais , Camundongos , Vigília/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Axônios
10.
J Clin Sleep Med ; 18(12): 2751-2761, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946418

RESUMO

STUDY OBJECTIVES: Narcolepsy often begins during adolescence and young adulthood, which are crucial periods for social development. The symptoms of narcolepsy likely impact social interactions, but little research has assessed the effects of narcolepsy on social relationships. The current study investigated the impact of narcolepsy on friendships and romantic and sexual relationships. METHODS: Young adults (18-39 years) with narcolepsy were recruited through national narcolepsy patient organizations. Participants (n = 254) completed an online survey assessing their friendships and romantic and sexual relationships, including communication about their social relationships with medical providers. RESULTS: All participants (mean age = 28.8 years; 87% female, 92% White/Caucasian) reported that narcolepsy made their social life more challenging. They reported receiving more support from significant others, compared to family or friends (P < .05). Most (80%) indicated that narcolepsy currently impacted their sex life. Only a few participants reported that their providers asked about their social and sex lives, though they wanted providers to ask. CONCLUSIONS: Narcolepsy impacts social functioning in young adults. Many individuals with narcolepsy prioritize single, meaningful, romantic relationships as developing and sustaining new relationships may be challenging. In addition, narcolepsy symptoms impact sexual functioning. Though many participants wanted to discuss their social and sex lives with providers, only a few providers ask. Treatment of narcolepsy in young adulthood should include supporting individuals regarding the impact on social, romantic, and sexual health. CITATION: Davidson RD, Biddle K, Nassan M, Scammell TE, Zhou ES. The impact of narcolepsy on social relationships in young adults. J Clin Sleep Med. 2022;18(12):2751-2761.


Assuntos
Relações Interpessoais , Narcolepsia , Adolescente , Adulto Jovem , Feminino , Humanos , Adulto , Masculino , Amigos , Narcolepsia/complicações , Inquéritos e Questionários
11.
Nat Commun ; 13(1): 4163, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851580

RESUMO

Humans and animals lacking orexin neurons exhibit daytime sleepiness, sleep attacks, and state instability. While the circuit basis by which orexin neurons contribute to consolidated wakefulness remains unclear, existing models posit that orexin neurons provide their wake-stabilizing influence by exerting excitatory tone on other brain arousal nodes. Here we show using in vivo optogenetics, in vitro optogenetic-based circuit mapping, and single-cell transcriptomics that orexin neurons also contribute to arousal maintenance through indirect inhibition of sleep-promoting neurons of the ventrolateral preoptic nucleus. Activation of this subcortical circuit rapidly drives wakefulness from sleep by differentially modulating the activity of ventrolateral preoptic neurons. We further identify and characterize a feedforward circuit through which orexin (and co-released glutamate) acts to indirectly target and inhibit sleep-promoting ventrolateral preoptic neurons to produce arousal. This revealed circuitry provides an alternate framework for understanding how orexin neurons contribute to the maintenance of consolidated wakefulness and stabilize behavioral state.


Assuntos
Nível de Alerta , Sono , Animais , Nível de Alerta/fisiologia , Humanos , Neurônios/fisiologia , Orexinas , Sono/fisiologia , Vigília/fisiologia
13.
N Engl J Med ; 386(20): 1950-1952, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35584160
14.
Front Behav Neurosci ; 16: 837523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401134

RESUMO

Normal neurodevelopment requires precise expression of the key ubiquitin ligase gene Ube3a. Comparing newly generated mouse models for Ube3a downregulation (models of Angelman syndrome) vs. Ube3a upregulation (models for autism), we find reciprocal effects of Ube3a gene dosage on phenotypes associated with circadian rhythmicity, including the amount of locomotor activity. Consistent with results from neurons in general, we find that Ube3a is imprinted in neurons of the suprachiasmatic nuclei (SCN), the pacemaking circadian brain locus, despite other claims that SCN neurons were somehow exceptional to these imprinting rules. In addition, Ube3a-deficient mice lack the typical drop in wake late in the dark period and have blunted responses to sleep deprivation. Suppression of physical activity by light in Ube3a-deficient mice is not due to anxiety as measured by behavioral tests and stress hormones; quantification of stress hormones may provide a mechanistic link to sleep alteration and memory deficits caused by Ube3a deficiency, and serve as an easily measurable biomarker for evaluating potential therapeutic treatments for Angelman syndrome. We conclude that reduced Ube3a gene dosage affects not only neurodevelopment but also sleep patterns and circadian rhythms.

15.
Nat Commun ; 12(1): 5249, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475397

RESUMO

The wake-active orexin system plays a central role in the dynamic regulation of glucose homeostasis. Here we show orexin receptor type 1 and 2 are predominantly expressed in dorsal raphe nucleus-dorsal and -ventral, respectively. Serotonergic neurons in ventral median raphe nucleus and raphe pallidus selectively express orexin receptor type 1. Inactivation of orexin receptor type 1 in serotonin transporter-expressing cells of mice reduced insulin sensitivity in diet-induced obesity, mainly by decreasing glucose utilization in brown adipose tissue and skeletal muscle. Selective inactivation of orexin receptor type 2 improved glucose tolerance and insulin sensitivity in obese mice, mainly through a decrease in hepatic gluconeogenesis. Optogenetic activation of orexin neurons in lateral hypothalamus or orexinergic fibers innervating raphe pallidus impaired or improved glucose tolerance, respectively. Collectively, the present study assigns orexin signaling in serotonergic neurons critical, yet differential orexin receptor type 1- and 2-dependent functions in the regulation of systemic glucose homeostasis.


Assuntos
Glucose/metabolismo , Obesidade/metabolismo , Receptores de Orexina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Homeostase , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/metabolismo , Resistência à Insulina , Fígado/metabolismo , Camundongos , Fibras Nervosas/metabolismo , Obesidade/etiologia , Receptores de Orexina/genética , Orexinas/metabolismo , Núcleos da Rafe/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais
16.
Front Neurosci ; 15: 644757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746708

RESUMO

Narcolepsy is a sleep disorder caused by selective death of the orexin neurons that often begins in childhood. Orexin neuron loss disinhibits REM sleep during the active period and produces cataplexy, episodes of paralysis during wakefulness. Cataplexy is often worse when narcolepsy develops in children compared to adults, but the reason for this difference remains unknown. We used orexin-tTA; TetO DTA mice to model narcolepsy at different ages. When doxycycline is removed from the diet, the orexin neurons of these mice express diphtheria toxin A and die within 2-3 weeks. We removed doxycycline at 4 weeks (young-onset) or 14 weeks (adult-onset) of age in male and female mice. We implanted electroencephalography (EEG) and electromyography (EMG) electrodes for sleep recordings two weeks later and then recorded EEG/EMG/video for 24 h at 3 and 13 weeks after removal of doxycycline. Age-matched controls had access to doxycycline diet for the entire experiment. Three weeks after doxycycline removal, both young-onset and adult-onset mice developed severe cataplexy and the sleep-wake fragmentation characteristic of narcolepsy. Cataplexy and maintenance of wake were no worse in young-onset compared to adult-onset mice, but female mice had more bouts of cataplexy than males. Orexin neuron loss was similarly rapid in both young- and adult-onset mice. As age of orexin neuron loss does not impact the severity of narcolepsy symptoms in mice, the worse symptoms in children with narcolepsy may be due to more rapid orexin neuron loss than in adults.

17.
Sleep ; 44(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33512510

RESUMO

STUDY OBJECTIVES: We determine if young people with narcolepsy type 1 (NT1), narcolepsy type 2 (NT2), and idiopathic hypersomnia (IH) have distinct nocturnal sleep stability phenotypes compared to subjectively sleepy controls. METHODS: Participants were 5- to 21-year old and drug-naïve or drug free: NT1 (n = 46), NT2 (n = 12), IH (n = 18), and subjectively sleepy controls (n = 48). We compared the following sleep stability measures from polysomnogram recording between each hypersomnolence disorder to subjectively sleepy controls: number of wake and sleep stage bouts, Kaplan-Meier survival curves for wake and sleep stages, and median bout durations. RESULTS: Compared to the subjectively sleepy control group, NT1 participants had more bouts of wake and all sleep stages (p ≤ .005) except stage N3. NT1 participants had worse survival of nocturnal wake, stage N2, and rapid eye movement (REM) bouts (p < .005). In the first 8 hours of sleep, NT1 participants had longer stage N1 bouts but shorter REM (all ps < .004). IH participants had a similar number of bouts but better survival of stage N2 bouts (p = .001), and shorter stage N3 bouts in the first 8 hours of sleep (p = .003). In contrast, NT2 participants showed better stage N1 bout survival (p = .006) and longer stage N1 bouts (p = .02). CONCLUSIONS: NT1, NT2, and IH have unique sleep physiology compared to subjectively sleepy controls, with only NT1 demonstrating clear nocturnal wake and sleep instability. Overall, sleep stability measures may aid in diagnoses and management of these central nervous system disorders of hypersomnolence.


Assuntos
Doenças do Sistema Nervoso Central , Distúrbios do Sono por Sonolência Excessiva , Hipersonia Idiopática , Narcolepsia , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Fases do Sono , Adulto Jovem
18.
J Comp Neurol ; 529(3): 635-654, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32602558

RESUMO

Sensory information is transmitted from peripheral nerves, through the spinal cord, and up to the brain. Sensory information may be modulated by projections from the brain to the spinal cord, but the neural substrates for top-down sensory control are incompletely understood. We identified a novel population of inhibitory neurons in the mouse brainstem, distinguished by their expression of prodynorphin, which we named LJA5. Here, we identify a similar group of Pdyn+ neurons in the human brainstem, and we define the efferent and afferent projection patterns of LJA5 neurons in mouse. Using specific genetic tools, we selectively traced the projections of the Pdyn-expressing LJA5 neurons through the brain and spinal cord. Terminal fields were densest in the lateral and ventrolateral periaqueductal gray (PAG), lateral parabrachial nucleus (LPB), caudal pressor area, and lamina I of the spinal trigeminal nucleus and all levels of the spinal cord. We then labeled cell types in the PAG, LPB, medulla, and spinal cord to better define the specific targets of LJA5 boutons. LJA5 neurons send the only known inhibitory descending projection specifically to lamina I of the spinal cord, which transmits afferent pain, temperature, and itch information up to the brain. Using retrograde tracing, we found LJA5 neurons receive inputs from sensory and stress areas such as somatosensory/insular cortex, preoptic area, paraventricular nucleus, dorsomedial nucleus and lateral hypothalamus, PAG, and LPB. This pattern of inputs and outputs suggest LJA5 neurons are uniquely positioned to be activated by sensation and stress, and in turn, inhibit pain and itch.


Assuntos
Tronco Encefálico/química , Tronco Encefálico/metabolismo , Encefalinas/análise , Encefalinas/metabolismo , Neurônios/química , Neurônios/metabolismo , Precursores de Proteínas/análise , Precursores de Proteínas/metabolismo , Animais , Tronco Encefálico/citologia , Humanos , Recém-Nascido , Camundongos , Camundongos Transgênicos
20.
Sleep ; 43(10)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32253429

RESUMO

STUDY OBJECTIVES: Disrupted nighttime sleep (DNS) is a core narcolepsy symptom of unconsolidated sleep resulting from hypocretin neuron loss. In this study, we define a DNS objective measure and evaluate its diagnostic utility for pediatric narcolepsy type 1 (NT1). METHODS: This was a retrospective, multisite, cross-sectional study of polysomnograms (PSGs) in 316 patients, ages 6-18 years (n = 150 NT1, n = 22 narcolepsy type 2, n = 27 idiopathic hypersomnia, and n = 117 subjectively sleepy subjects). We assessed sleep continuity PSG measures for (1) their associations with subjective and objective daytime sleepiness, daytime sleep onset REM periods (SOREMPs), self-reported disrupted nocturnal sleep and CSF hypocretin levels and (2) their predictive value for NT1 diagnosis. We then combined the best performing DNS measure with nocturnal SOREMP (nSOREMP) to assess the added value to the logistic regression model and the predictive accuracy for NT1 compared with nSOREMP alone. RESULTS: The Wake/N1 Index (the number of transitions from any sleep stage to wake or NREM stage 1 normalized by total sleep time) was associated with objective daytime sleepiness, daytime SOREMPs, self-reported disrupted sleep, and CSF hypocretin levels (p's < 0.003) and held highest area under the receiver operator characteristic curves (AUC) for NT1 diagnosis. When combined with nSOREMP, the DNS index had greater accuracy for diagnosing NT1 (AUC = 0.91 [0.02]) than nSOREMP alone (AUC = 0.84 [0.02], likelihood ratio [LR] test p < 0.0001). CONCLUSIONS: The Wake/N1 Index is an objective DNS measure that can quantify DNS severity in pediatric NT1. The Wake/N1 Index in combination with or without nSOREMP is a useful sleep biomarker that improves recognition of pediatric NT1 using only the nocturnal PSG.


Assuntos
Hipersonia Idiopática , Narcolepsia , Adolescente , Criança , Estudos Transversais , Humanos , Narcolepsia/diagnóstico , Estudos Retrospectivos , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA