Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35921220

RESUMO

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Assuntos
Hipertensão , MicroRNAs , Animais , Humanos , Ratos , Bicarbonatos , Hipertensão Essencial/metabolismo , Hipertensão/metabolismo , Medula Renal , MicroRNAs/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo
2.
Nephrol Dial Transplant ; 35(3): 411-421, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504790

RESUMO

BACKGROUND: Vitamin D (VD) and phosphate (Pi) load are considered as contributors to cardiovascular disease in chronic kidney disease and the general population, but interactive effects of VD and Pi intake on the heart are not clearly illustrated. METHODS: We fed normal male rats with three levels of dietary VD (100, 1100 or 5000 IU/kg chow) and Pi (0.2, 0.6 or 1.6%) (3X3 design) for 8 weeks and examined renal and cardiac function and histology. RESULTS: High dietary Pi decreased plasma and renal Klotho and plasma 25-hydroxyvitamin D, and increased plasma Pi, fibroblast growth factor 23 and parathyroid hormone without affecting renal function, while low Pi increased plasma and renal Klotho. Both low and high VD diets enhanced high Pi-reduced Klotho expression. Low dietary VD reduced-plasma Klotho was rescued by a low Pi diet. High dietary Pi reduced-cardiac ejection fraction was not modified by a low or high VD diet, but the dietary VD effects on cardiac pathologic changes were more complex. High dietary Pi-induced cardiac hypertrophy was attenuated by a low VD and exacerbated by a high VD diet. In contrast, high dietary Pi -induced cardiac fibrosis was magnified by a low VD and attenuated by a high VD diet. CONCLUSIONS: High Pi diet induces hypertrophy and fibrosis in left ventricles, a low VD diet accelerates high Pi-induced fibrosis, and a high VD diet exacerbated high Pi -induced hypertrophy. Therefore, cardiac phosphotoxicity is exacerbated by either high or low dietary VD in rats with normal kidney function.


Assuntos
Dieta , Rim/metabolismo , Fosfatos/farmacologia , Remodelação Ventricular/fisiologia , Vitamina D/análogos & derivados , Animais , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Rim/efeitos dos fármacos , Proteínas Klotho , Masculino , Hormônio Paratireóideo/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Ventricular/efeitos dos fármacos , Vitamina D/administração & dosagem
3.
J Am Soc Nephrol ; 29(8): 2089-2098, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30021759

RESUMO

Background Despite epidemiologic evidence for increased cardiovascular morbidity and mortality associated with both high dietary and serum phosphate in humans with normal renal function, no controlled phosphate intervention studies of systemic hemodynamics have been reported. Higher serum 25(OH) vitamin D levels are associated with better cardiovascular outcomes, but vitamin D increases intestinal phosphate absorption.Methods We conducted a prospective outpatient study with blinded assessment in 20 young adults with normal renal function randomized to high phosphate (regular diet plus 1 mmol/kg body wt per day of Na as neutral sodium phosphate) or low phosphate (regular diet plus lanthanum, 750 mg thrice/day, plus 0.7 mmol/kg body wt per day of Na as NaCl) for 11 weeks. After 6 weeks, all subjects received vitamin D3 (600,000 U) by intramuscular injection. Outcome parameters were 24-hour ambulatory systolic and diastolic BP (SBP and DBP), pulse rate (PR), biomarkers, and measures of endothelial and arterial function.Results Compared with the low-phosphate diet group, the high-phosphate diet group had a significant increase in mean±SEM fasting plasma phosphate concentration (0.23±0.11 mmol/L); 24-hour SBP and DBP (+4.1; 95% confidence interval [95% CI], 2.1 to 6.1; and +3.2; 95% CI, 1.2 to 5.2 mm Hg, respectively); mean 24-hour PR (+4.0; 95% CI, 2.0 to 6.0 beats/min); and urinary metanephrine and normetanephrine excretion (54; 95% CI, 50 to 70; and 122; 95% CI, 85 to 159 µg/24 hr, respectively). Vitamin D had no effect on any of these parameters. Neither high- nor low-phosphate diet nor vitamin D affected endothelial function or arterial elasticity.Conclusions Increased phosphate intake (controlled for sodium) significantly increases SBP, DBP, and PR in humans with normal renal function, in part, by increasing sympathoadrenergic activity.


Assuntos
Dieta , Suplementos Nutricionais/efeitos adversos , Hipertensão/etiologia , Fosfatos/sangue , Vitamina D/administração & dosagem , Adulto , Análise de Variância , Determinação da Pressão Arterial , Intervalos de Confiança , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Hipertensão/fisiopatologia , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Fosfatos/administração & dosagem , Estudos Prospectivos , Valores de Referência , Medição de Risco , Método Simples-Cego , Cloreto de Sódio/sangue , Adulto Jovem
4.
J Diabetes Complications ; 30(6): 1158-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27260862

RESUMO

BACKGROUND: Experimental K(+) depletion reversibly inhibits insulin secretion, while chronic metabolic acidosis decreases insulin sensitivity. We aimed to investigate the effects of potassium supplementation and alkali supplementation in non-acidotic, normokalemic humans with combined glucose intolerance. STUDY DESIGN AND RESULTS: In this double-blind, placebo-controlled study in 11 subjects (7 male, 4 female, ages 47-63 years), 90meqs of oral KCl or Kcitrate per day for 2weeks each increased insulin production as measured by homeostasis model assessment Beta [KCl=86 (CI 81-91), Kcitrate=88 (82-94), placebo=78 (73-83)%, p<0.04], but only Kcitrate attenuated insulin resistance as assessed by HOMA-IR (insulin resistance, Kcitrate=2.8 (2.5-3.1), placebo=3.2 (2.9-3.5), p<0.03) and only Kcitrate increased quantitative insulin sensitivity check index (Quicki, Kcitrate=0.355 (0.305-0.405), placebo=0.320 (0.265-0.375) p<0.04). These results were confirmed by independent measurements, i.e. HOMA C-peptide and whole body insulin sensitivity index measured during oral glucose tolerance testing. Kcitrate significantly decreased systolic and diastolic 24-hour ambulatory blood pressures (-4.0 (-3 to -5) and -2.7 (-1.9 to -3.5), respectively as compared to placebo, p<0.02) while KCl was without a significant effect. CONCLUSIONS: K(+) supplementation in the absence of overt K(+) depletion improves beta-cell function in subjects with combined glucose intolerance. The insulin-sensitizing and hypotensive effect, however, depend on citrate as the accompanying anion.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Cloreto de Potássio/uso terapêutico , Citrato de Potássio/uso terapêutico , Idoso , Glicemia , Estudos Cross-Over , Método Duplo-Cego , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina , Masculino , Projetos Piloto
5.
J Am Soc Nephrol ; 25(12): 2730-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24854273

RESUMO

The human response to acute phosphate (PO4) loading is poorly characterized, and it is unknown whether an intestinal phosphate sensor mechanism exists. Here, we characterized the human mineral and endocrine response to parenteral and duodenal acute phosphate loads. Healthy human participants underwent 36 hours of intravenous (IV; 1.15 [low dose] and 2.30 [high dose] mmol of PO4/kg per 24 hours) or duodenal (1.53 mmol of PO4/kg per 24 hours) neutral sodium PO4 loading. Control experiments used equimolar NaCl loads. Maximum PO4 urinary excretory responses occurred between 12 and 24 hours and were similar for low-dose IV and duodenal infusion. Hyperphosphatemic responses were also temporally and quantitatively similar for low-dose IV and duodenal PO4 infusion. Fractional renal PO4 clearance increased approximately 6-fold (high-dose IV group) and 4-fold (low-dose IV and duodenal groups), and significant reductions in plasma PO4 concentrations relative to peak values occurred by 36 hours, despite persistent PO4 loading. After cessation of loading, frank hypophosphatemia occurred. The earliest phosphaturic response occurred after plasma PO4 and parathyroid hormone concentrations increased. Plasma fibroblast growth factor-23 concentration increased after the onset of phosphaturia, followed by a decrease in plasma 1,25(OH)2D levels; α-Klotho levels did not change. Contrary to results in rodents, we found no evidence for intestinal-specific phosphaturic control mechanisms in humans. Complete urinary phosphate recovery in the IV loading groups provides evidence against any important extrarenal response to acute PO4 loads.


Assuntos
Fosfatos/sangue , Fosfatos/metabolismo , Administração Intravenosa , Adulto , Duodeno/efeitos dos fármacos , Eletrólitos/química , Sistema Endócrino/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Taxa de Filtração Glomerular , Glucuronidase/metabolismo , Humanos , Hipocalcemia/metabolismo , Hipofosfatemia/metabolismo , Hipofosfatemia Familiar/metabolismo , Infusões Intravenosas , Proteínas Klotho , Masculino , Hormônio Paratireóideo/metabolismo , Fosfatos/urina , Fatores de Tempo , Adulto Jovem
6.
Nephrol Dial Transplant ; 28(8): 2066-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23677648

RESUMO

BACKGROUND: Cyclosporine A (CsA) is one of the most frequently used anticalcineurinic drugs for preventing graft rejection and autoimmune disease. Its use is hampered by nephrotoxic effects, namely an impairment of the glomerular filtration rate (GFR) and hypertension. Evidence suggests that reactive oxygen species (ROS) play a causal role in the nephrotoxicity. The present study aims to investigate in vivo the effects of a new recombinant mitochondrial manganese-containing superoxide dismutase (rMnSOD), a strong antioxidant, on the CsA-induced nephotoxicity. METHODS: Rats were treated with CsA (25 mg/kg/day) alone or in combination with rMnSOD (10 µg/kg/day) for 7 days. At the end of the treatment, GFR was estimated by inulin clearance (mL/min/100 g b.w.) and the mean arterial pressure (MAP) was recorded through a catheter inserted in the carotid artery. Superoxide concentration within the cells of the abdominal aorta was quantified from the oxidation of dihydroethidium (DHE). In kidney tissues, ROS levels were measured by the 2'7' dichloroflurescin diacetate assay. Renal morphology was examined at the histochemistry level. RESULTS: CsA-treated rats showed a severe decrease in GFR (0.34 ± 0.17 versus 0.94 ± 0.10 in control, P < 0.001) which was prevented by rMnSOD co-administration (0.77 ± 0.10). CsA-injected animals presented with higher blood pressure which was unaffected by rMnSOD. ROS levels both in the aorta and in renal tissue were significantly increased by CsA treatment, and normalized by the co-administration with rMnSOD. This effect was, partly, paralleled by the recovery from CsA-induced morphological lesions. CONCLUSIONS: Administration of rMnSOD prevents CsA-mediated impairment of the GFR along with morphological alteration. This effect could be related to the inhibition of ROS.


Assuntos
Ciclosporina/farmacologia , Imunossupressores/farmacologia , Proteínas Recombinantes/farmacologia , Insuficiência Renal/prevenção & controle , Superóxido Dismutase/metabolismo , Animais , Taxa de Filtração Glomerular , Testes de Função Renal , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/patologia
7.
J Nephrol ; 23 Suppl 16: S191-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21170880

RESUMO

Cyclosporine (CsA) is among the most widely used immunosuppressants for preventing graft rejection and autoimmune diseases. However, its clinical use is hampered by its significant nephrotoxicity and effects as a cause of hypertension. The proximal tubular Na+-H+ exchanger (NHE3) is responsible for transcellular reabsorption of 30%-60% of the sodium filtered by the glomerulus. CsA induces a reduction of absolute sodium reabsorption, and this effect is, most probably, correlated with the decrease of NHE3 activity. In Henle's loop, in physiological conditions, the Na+-K+-2Cl- cotransporter (NKCC2) reabsorbs approximately 20% of the filtered Na+ and Cl-. CsA increases the NKCC2 activity in cultured bovine renal NBL-1 cells. In the collecting duct, CsA may cause hypertension by stimulating the epithelial Na+ channel (ENaC) through a pathway associated with inhibition of ABCA1 and consequent elevation of cholesterol in the cells. It is still unclear whether CsA regulates the Na+-Cl- cotransporter in the distal tubule and ENaC in the collecting duct. Aside from this, there is evidence suggesting the possible involvement of free radicals during the development of CsA-induced hypertension. The hypertensive effect is, most probably, correlated with higher levels of superoxide (O2-) that decreases glomerular filtration rate and may affect fluid reabsorption along the nephron.


Assuntos
Ciclosporina/toxicidade , Imunossupressores/toxicidade , Rim/efeitos dos fármacos , Sódio/metabolismo , Absorção , Animais , Canais Epiteliais de Sódio/fisiologia , Humanos , Rim/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simportadores de Cloreto de Sódio/fisiologia , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/fisiologia , Simportadores de Cloreto de Sódio-Potássio/fisiologia , Membro 1 da Família 12 de Carreador de Soluto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA