Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Alemão | MEDLINE | ID: mdl-36648498

RESUMO

During the SARS-CoV­2 pandemic, various data had to be collected to support political decisions for pandemic preparedness and response. Nevertheless, using analogue tools like paper and pencil as well as sending files with media discontinuity that have to be merged later are not useful and can hardly provide usable data in real time. With the selected system architecture, the Bavarian Online Database for Corona Screening Tests (BayCoRei) is a central, Bavaria-wide, consistent digital solution that is agile and easy to use. BayCoRei uses established technical components and interfaces. Apart from this, the support of the individual stakeholders (e.g., health authorities, service providers, and district governments) plays a decisive role in the success of the solution. The present article describes BayCoRei and two other online databases as examples that comprise the technology and architecture that have proven to be (rapidly) deployable and points out the gap between intention and reality regarding pandemic management.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , Alemanha
2.
Methods Mol Biol ; 1177: 163-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24943322

RESUMO

Tandem affinity purification (TAP) is a powerful technique to identify protein complex members. The modular composition of TAP-tags allows two sequential protein enrichment steps and thereby drastically reduces the amount of contaminants. Here, we describe the application of the SnAvi-tag-a TAP-tag useful in different expression systems. Due to its modular composition, this tag is multifunctional and facilitates among others the in vivo visualization of tagged proteins and their cell type specific activation.


Assuntos
Cromatografia de Afinidade/métodos , Biologia Molecular/métodos , Proteínas Recombinantes/isolamento & purificação , Epitopos/química , Escherichia coli/genética , Especificidade de Órgãos , Mapas de Interação de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Espectrometria de Massas em Tandem
3.
Acta Neuropathol Commun ; 2: 44, 2014 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725366

RESUMO

Nemaline myopathy (NM) is a rare congenital myopathy characterised by hypotonia, muscle weakness, and often skeletal muscle deformities with the presence of nemaline bodies (rods) in the muscle biopsy. The nebulin (NEB) gene is the most commonly mutated and is thought to account for approximately 50% of genetically diagnosed cases of NM. We undertook a detailed muscle morphological analysis of 14 NEB-mutated NM patients with different clinical forms to define muscle pathological patterns and correlate them with clinical course and genotype. Three groups were identified according to clinical severity. Group 1 (n = 5) comprises severe/lethal NM and biopsy in the first days of life. Group 2 (n = 4) includes intermediate NM and biopsy in infancy. Group 3 (n = 5) comprises typical/mild NM and biopsy in childhood or early adult life. Biopsies underwent histoenzymological, immunohistochemical and ultrastructural analysis. Fibre type distribution patterns, rod characteristics, distribution and localization were investigated. Contractile performance was studied in muscle fibre preparations isolated from seven muscle biopsies from each of the three groups. G1 showed significant myofibrillar dissociation and smallness with scattered globular rods in one third of fibres; there was no type 1 predominance. G2 presented milder sarcomeric dissociation, dispersed or clustered nemaline bodies, and type 1 predominance/uniformity. In contrast, G3 had well-delimited clusters of subsarcolemmal elongated rods and type 1 uniformity without sarcomeric alterations. In accordance with the clinical and morphological data, functional studies revealed markedly low forces in muscle bundles from G1 and a better contractile performance in muscle bundles from biopsies of patients from G2, and G3.In conclusion NEB-mutated NM patients present a wide spectrum of morphological features. It is difficult to establish firm genotype phenotype correlation. Interestingly, there was a correlation between clinical severity on the one hand and the degree of sarcomeric dissociation and contractility efficiency on the other. By contrast the percentage of fibres occupied by rods, as well as the quantity and the sub sarcolemmal position of rods, appears to inversely correlate with severity. Based on our observations, we propose myofibrillar dissociation and changes in contractility as an important cause of muscle weakness in NEB-mutated NM patients.


Assuntos
Proteínas Musculares/genética , Músculos/patologia , Músculos/ultraestrutura , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Microscopia Eletrônica , Contração Muscular/genética , Debilidade Muscular/etiologia , Miopatias da Nemalina/complicações , Cadeias Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Índice de Gravidade de Doença , Adulto Jovem
4.
Nucleic Acids Res ; 38(6): e91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20047968

RESUMO

Systematic tandem-affinity-purification (TAP) of protein complexes was tremendously successful in yeast and has changed the general concept of how we understand protein function in eukaryotic cells. The transfer of this method to other model organisms has been difficult and may require specific adaptations. We were especially interested to establish a cell-type-specific TAP system for Caenorhabditis elegans, a model animal well suited to high-throughput analysis, proteomics and systems biology. By combining the high-affinity interaction between in vivo biotinylated target-proteins and streptavidin with the usage of a newly identified epitope of the publicly shared SB1 monoclonal antibody we created a novel in vivo fluorescent tag, the SnAvi-Tag. We show the versatile application of the SnAvi-Tag in Escherichia coli, vertebrate cells and in C. elegans for tandem affinity purification of protein complexes, western blotting and also for the in vivo sub-cellular localization of labelled proteins.


Assuntos
Complexos Multiproteicos/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Animais , Anticorpos Monoclonais/imunologia , Proteínas de Caenorhabditis elegans/isolamento & purificação , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Epitopos/química , Escherichia coli/genética , Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas Recombinantes de Fusão/análise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Proteína 1 Associada à Membrana da Vesícula/química , Proteína 1 Associada à Membrana da Vesícula/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA