Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679399

RESUMO

Pressure sensors integrated in surfaces, such as the floor, can enable movement, event, and object detection with relatively little effort and without raising privacy concerns, such as video surveillance. Usually, this requires a distributed array of sensor pixels, whose design must be optimized according to the expected use case to reduce implementation costs while providing sufficient sensitivity. In this work, we present an unobtrusive smart floor concept based on floor tiles equipped with a printed piezoelectric sensor matrix. The sensor element adds less than 130 µm in thickness to the floor tile and offers a pressure sensitivity of 36 pC/N for a 1 cm2 pixel size. A floor model was established to simulate how the localized pressure excitation acting on the floor spreads into the sensor layer, where the error is only 1.5%. The model is valuable for optimizing the pixel density and arrangement for event and object detection while considering the smart floor implementation in buildings. Finally, a demonstration, including wireless connection to the computer, is presented, showing the viability of the tile to detect finger touch or movement of a metallic rod.


Assuntos
Percepção do Tato , Tato
2.
Sci Rep ; 12(1): 5233, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347177

RESUMO

Magnetoelectric (magnetic/piezoelectric) heterostructures bring new functionalities to develop novel transducer devices such as (wireless) sensors or energy harvesters and thus have been attracting research interest in the last years. We have studied the magnetoelectric coupling between Metglas films (2826 MB) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) in a laminate structure. The metallic Metglas film itself served as bottom electrode and as top electrode we used an electrically conductive polymer, poly(3,4-ethylene-dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). Besides a direct electrical wiring via a graphite ink, a novel contactless readout method is presented using a capacitive coupling between the PEDOT:PSS layer and an electrode not in contact with the PEDOT:PSS layer. From the experimental result we determined a magnetoelectric coupling of 1445 V/(cm·Oe) at the magnetoelastic resonance of the structure, which is among the highest reported values for laminate structures of a magnetostrictive and a piezoelectric polymer layer. With the noncontact readout method, a magnetoelectric coupling of about 950 V/(cm·Oe) could be achieved, which surpasses previously reported values for the case of direct sample contacting. 2D laser Doppler vibrometer measurements in combination with FE simulations were applied to reveal the complex vibration pattern resulting in the strong resonant response.

3.
Sensors (Basel) ; 21(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34300587

RESUMO

The ski deflection with the associated temporal and segmental curvature variation can be considered as a performance-relevant factor in alpine skiing. Although some work on recording ski deflection is available, the segmental curvature among the ski and temporal aspects have not yet been made an object of observation. Therefore, the goal of this study was to develop a novel ski demonstrator and to conceptualize and validate an empirical curvature model. Twenty-four PyzoFlex® technology-based sensor foils were attached to the upper surface of an alpine ski. A self-developed instrument simultaneously measuring sixteen sensors was used as a data acquisition device. After calibration with a standardized bending test, using an empirical curvature model, the sensors were applied to analyze the segmental curvature characteristic (m-1) of the ski in a quasi-static bending situation at five different load levels between 100 N and 230 N. The derived curvature data were compared with values obtained from a high-precision laser measurement system. For the reliability assessment, successive pairs of trials were evaluated at different load levels by calculating the change in mean (CIM), the coefficient of variation (CV) and the intraclass correlation coefficient (ICC 3.1) with a 95% confidence interval. A high reliability of CIM -1.41-0.50%, max CV 1.45%, and ICC 3.1 > 0.961 was found for the different load levels. Additionally, the criterion validity based on the Pearson correlation coefficient was R2 = 0.993 and the limits of agreement, expressed by the accuracy (systematic bias) and the precision (SD), was between +9.45 × 10-3 m-1 and -6.78 × 10-3 m-1 for all load levels. The new measuring system offers both good accuracy (1.33 × 10-3 m-1) and high precision (4.14 × 10-3 m-1). However, the results are based on quasi-static ski deformations, which means that a transfer into the field is only allowed to a limited extent since the scope of the curvature model has not yet been definitely determined. The high laboratory-related reliability and validity of our novel ski prototype featuring PyzoFlex® technology make it a potential candidate for on-snow application such as smart skiing equipment.


Assuntos
Esqui , Reprodutibilidade dos Testes
4.
Nat Commun ; 12(1): 2399, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893292

RESUMO

Energy autonomy and conformability are essential elements in the next generation of wearable and flexible electronics for healthcare, robotics and cyber-physical systems. This study presents ferroelectric polymer transducers and organic diodes for imperceptible sensing and energy harvesting systems, which are integrated on ultrathin (1-µm) substrates, thus imparting them with excellent flexibility. Simulations show that the sensitivity of ultraflexible ferroelectric polymer transducers is strongly enhanced by using an ultrathin substrate, which allows the mounting on 3D-shaped objects and the stacking in multiple layers. Indeed, ultraflexible ferroelectric polymer transducers have improved sensitivity to strain and pressure, fast response and excellent mechanical stability, thus forming imperceptible wireless e-health patches for precise pulse and blood pressure monitoring. For harvesting biomechanical energy, the transducers are combined with rectifiers based on ultraflexible organic diodes thus comprising an imperceptible, 2.5-µm thin, energy harvesting device with an excellent peak power density of 3 mW·cm-3.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais/instrumentação , Eletrônica Médica/instrumentação , Transdutores , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Eletrônica Médica/métodos , Humanos , Sistemas Microeletromecânicos/instrumentação , Sistemas Microeletromecânicos/métodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Reprodutibilidade dos Testes , Robótica/instrumentação , Robótica/métodos
5.
ACS Appl Mater Interfaces ; 12(34): 38614-38625, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32803962

RESUMO

Piezo- and pyroelectricity is an intrinsically combined material property for all ferroelectric materials. While the pyroelectric coefficients of most ferroelectric ceramics and polymers have the same sign, their piezoelectric coefficients have opposite ones. On this basis, we can create a polymer-ceramic nanocomposite material where either the piezo- or the pyroelectric effect is suppressed by a selective poling of the single constituents, a concept that was shown for composite pellets in the late 1990s. Motivated by the current demand for lightweight and low-cost piezoelectric sensors with reduced cross-sensitivity to temperature variations, we have taken up this idea and formulated screen-printable nanocomposite pastes from poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and lead titanate (PbTiO3, PT) or sodium bismuth titanate (NaBiTi2O6 or BNT) nanoparticles, respectively. We demonstrate that printed sensors on flexible substrates based on these materials can be conditioned by selective poling of the nanoparticles and the polymer matrix to show either only piezoelectric or only pyroelectric sensor response. We examined the degree of cross-talk between the thermal and pressure sensing channels and show a reduction of over 90% cross-sensitivity for the ferroelectric composites compared to pure P(VDF-TrFE) sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA